首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
化学   5篇
  2023年   1篇
  2018年   1篇
  2015年   1篇
  2013年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g~(-1),3C时放电容量仍然可保持在160.5 m Ah·g~(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。  相似文献   
2.
随着新能源如电动汽车、储能电站的蓬勃发展,人们对下一代高性能锂离子电池的能量密度、功率密度和循环寿命提出了更高的要求. 而富锂锰基正极材料xLi2MnO3·(1-x)LiMO2(0 < x < 1,M = Mn、Co、Ni…)具有可逆比容量高(240 ~ 280 mAh·g-1,2.0 ~ 4.8 V)、电化学性能较佳、成本较低等优点,已吸引了研究者的关注,有望成为下一代锂离子电池用正极材料. 本实验室采用固相法和溶胶-凝胶法制备不同的富锂锰基正极材料,其中,溶胶-凝胶法制得的Li[Li0.2Mn0.54Ni0.13Co0.13]O2电极首周期放电比容量277.3 mAh·g-1,50周期循环后容量272.8 mAh·g-1,容量保持率98.4%. 本文重点结合本实验室的研究工作,对新型富锂锰基正极材料xLi2MnO3·(1-x)LiMO2的结构、合成、电化学性能改性和充放电机理等进行总结与评述.  相似文献   
3.
随着人们对高比能量锂离子电池需求的逐步增加,Sn基合金成为目前高比容量负极材料的研究热点.以低成本的金属氧化物、活性炭为原料经碳热还原法首先合成出中间产物CoSn2,再将Co、石墨引入,经高能球磨制备了Sn30Co30C40三元合金负极材料.材料呈现微米级颗粒形貌,其内部是由均匀分散于无定形碳中10 nm左右CoSn晶粒所组成.材料的比容量为550 mAh/g左右,首次效率为80%左右,循环稳定性好、倍率性能优越,是一种非常有发展前景的高比容量锂离子电池负极材料.  相似文献   
4.
随着锂离子电池向高比能量方向发展,传统的石墨负极材料将逐渐被合金、金属氧化物等高比容量负极材料所取代。高比容量负极材料在循环过程中易产生较大的体积变化,从而导致电极循环性能衰退,限制了其实际应用。除从材料本身入手外,变换粘结剂是改善高比容量负极材料电化学性能的有效途径。本文对近十年来锂离子电池高比容量负极用粘结剂的发展进行了总结。对聚偏氟乙烯(PVDF)粘结剂进行改性处理,提高其黏弹性,可以显著改善电极的电化学性能。与PVDF相比,水性羧甲基纤维素(CMC)粘结剂可以明显提高Si基电极的电化学性能。CMC用作高比容量负极材料粘结剂明显优于PVDF的原因包括其利于电极浆料分散、与电解液不反应以及能够与活性物质之间形成化学键(共价键或氢键)等。同时,CMC本身的结构参数(分子量、取代度、阳离子)、CMC加入量、浆料pH值及电极孔隙率均对CMC电极的性能具有重要影响。聚丙烯酸(PAA)及海藻酸钠粘结剂由于含有更多的羧基(—COOH)基团,对高比容量负极材料具有更好的效果。其他新型粘结剂在高比容量负极性能的提升方面也具有较大潜力。  相似文献   
5.
采用高载量氧化物正极(>4mAh·cm-2)和超薄锂金属负极(<50μm)可以构建高比能锂金属二次电池。然而,该类电池的循环寿命和安全性受到锂金属不可控沉积的严重制约。高比表面积的锂枝晶和锂“苔藓”导致了较低的库伦效率,前者有一定可能穿刺隔膜,造成电池内短路,是亟待解决的安全隐患。因此,提升锂金属二次电池的循环寿命和安全性的关键在于实现锂金属的致密沉积。文献中已有多种化学方法可达到这样的效果。由于锂金属较软,受力容易发生形变,对锂金属电池施加机械压力是另一种促进锂金属致密沉积和提高循环性能的方法。然而,机械压力、锂金属形态的演变、和循环性能之间的关系尚未被完全理解。本文报道了一种基于薄膜压力传感器的电池压力测量装置,可以实时跟踪纽扣型锂金属电池内部的压力变化,并且探究外加机械压力对电池循环性能的影响。研究发现,在纽扣电池和高比能的软包电池(5 Ah,>380 Wh·kg-1)中,一定程度的压力可以促进锂金属的致密沉积,改善电池循环性能;而过大的压力则会导致锂金属向负极内部沉积,造成负极变形和电池性能恶化。我们的研究结果凸显了...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号