首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   11篇
化学   14篇
物理学   1篇
  2023年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
1.
成功地合成了石墨烯/CdTe量子点复合物,并采用透射电镜、紫外吸收光谱、荧光发射光谱、荧光衰减曲线和X射线光电子能谱对产物进行了表征。透射电镜结果显示CdTe量子点被修饰于石墨烯的表面;X射线光电子能谱结果表示石墨烯在合成过程中被还原,还表明在所合材料的表面具有羧基和羟基;荧光发射光谱和荧光衰减曲线的结果显示将CdTe量子点修饰于石墨烯表面显著提高了CdTe量子点的荧光性能。此外,基于克伦特罗和石墨烯/CdTe量子点复合物之间形成的氢键,所合成材料可用于定量分析克伦特罗。克伦特罗对石墨烯/CdTe量子点复合物具有显著的猝灭作用,荧光强度的降低(F0/F)与克伦特罗之间存在良好的线性关系,线性范围为7.22~108.30 μmol·L-1,检出限为4 μmol·L-1。  相似文献   
2.
采用密度泛函理论以及B3LYP方法和单激发组态相互作用(CIS)方法分别优化了一系列[Os(II)(CO)3(tfa)(L)](tfa为三氟乙酸; L=O^O(1), O^N(2), N^N(3), 其中O^O为六氟乙酰丙酮, O^N为羟基喹啉, N^N为3-(三氟甲基)-5-(2-吡啶基)吡唑)配合物的基态和激发态结构. 利用含时密度泛函理论(TD-DFT)结合极化连续溶剂化模型(PCM)计算了配合物在CH2Cl2溶液中的吸收和发射光谱. 研究结果表明, 优化得到的几何结构参数和相应的实验值符合得非常好, 激发态几何构型相对基态变化较小, 这与实验上观察到的较小的斯托克斯频移现象一致. 配合物1-3的最低能吸收分别在342、431和329 nm, 其磷光发射分别在521、638 和488 nm. 配合物1-3的最高占据分子轨道和最低空轨道主要表现为L配体的π和π*轨道特征, 所以它们的最低能吸收归属于π-π*电荷跃迁, 并混有少量的金属到配体的电荷跃迁(MLCT)和配体之间电荷跃迁(LLCT)微扰, 且其高能吸收也表现为配体内部(IL)和配体间(LL)的电荷跃迁. 此外, 它们的磷光发射和吸收有相似的跃迁特征.  相似文献   
3.
采用密度泛函理论以及B3LYP方法和单激发组态相互作用(CIS)方法分别优化了一系列[Os(II)(CO)3(tfa)(L)](tfa为三氟乙酸;L=O^O(1),O^N(2),N^N(3),其中O^O为六氟乙酰丙酮,O^N为羟基喹啉,N^N为3-(三氟甲基)-5-(2-吡啶基)吡唑)配合物的基态和激发态结构.利用含时密度泛函理论(TD-DFT)结合极化连续溶剂化模型(PCM)计算了配合物在CH2Cl2溶液中的吸收和发射光谱.研究结果表明,优化得到的几何结构参数和相应的实验值符合得非常好,激发态几何构型相对基态变化较小,这与实验上观察到的较小的斯托克斯频移现象一致.配合物1-3的最低能吸收分别在342、431和329nm,其磷光发射分别在521、638和488nm.配合物1-3的最高占据分子轨道和最低空轨道主要表现为L配体的π和π*轨道特征,所以它们的最低能吸收归属于π-π*电荷跃迁,并混有少量的金属到配体的电荷跃迁(MLCT)和配体之间电荷跃迁(LLCT)微扰,且其高能吸收也表现为配体内部(IL)和配体间(LL)的电荷跃迁.此外,它们的磷光发射和吸收有相似的跃迁特征.  相似文献   
4.
采用HF/DFT的混合泛函PBE0和UPBE0优化了配合物[Os(PH3)2(CN)2(N^N)](其中N^N=2,2′-吡啶)的基态和激发态结构.在基态和激发态结构的基础上,利用含时密度泛函理论(TD-DFT)方法,结合极化连续介质(PCM)模型分别计算了它在二氯甲烷(1)、甲醇(2)、气态(3)和乙腈(4)溶液中的吸收和发射光谱.研究结果表明:优化得到的几何结构参数和相应的实验值符合得非常好.在极性较大的溶剂(2和4)中Os—P(1)和Os—C(1)键较长,Os—N(3)键较短,溶剂的极性会影响配合物的电子云分布.配合物在1-4溶剂中的最低能吸收和发射均来自分子轨道68→71的激发,该激发被指认为[d(Os)+π(CN)+π(N^N)→π*(N^N)]的跃迁具有混合的MLCT/LLCT特征.配合物在1-4溶剂中的最低能吸收和发射分别在471,410,488和445nm以及598,536,634和545nm,表明随着溶剂极性的逐渐增大(3<1<4<2),最低能吸收和发射发生明显的蓝移.这显示出通过改变溶剂极性可以调节配合物的发光颜色.  相似文献   
5.
国家一流专业“双万计划”实施以来,吉林化工学院化学与制药工程学院通过积极探索和实践,找到了一种符合自身发展定位的专业人才培养模式,显著提升了专业建设效果。本文基于教育部工程教育专业认证“学生中心、产出导向、持续改进”的理念,从立德树人落实、培养方案设计、质量保障体系构建以及人才培养模式的组织和实施等方面,论述了学院加强一流专业建设的做法以及取得的主要成效,为地方本科院校一流专业建设提供了经验和参考。  相似文献   
6.
采用密度泛函方法研究了三个混合配体的Ru(II)配合物[Ru(terpy)(phen)X]+ (terpy为2,2',6',20'-三联吡啶,phen为1,10-邻二氮杂菲,X为-C≡CH (1)、Cl (2)和CN(3))的几何结构、电子结构和光谱性质.分别在B3LYP/LanL2DZ UB3LYP/LanL2DZ水平下优化了它们的基态和激发态结构.在TD-DFT计算水平下结合极化连续介质模型得到了它们在CH3CN溶液中的吸收和发射光谱.计算得到的Ru-C、Ru-N和Ru-Cl基态  相似文献   
7.
在氮气保护下利用共沉淀方法成功地合成了零价铁无定形磷酸钙复合物(Fe0/ACP复合物),并采用XRD、EDAX和FTIR对产物进行了表征。同时通过SEM和TEM分析可知所合成材料的粒径为300 nm左右。磁滞回线表明在磁场中可以将该复合物从非磁性材料中分离出来。氮气吸附脱附曲线表明所合成材料具有吸附性能。此外所合成Fe0/ACP复合物被用来吸附CdTe量子点,并采用二级动力学方程对吸附过程进行了分析。吸附产物采用XRD、FTIR、荧光和磁滞回线进行了表征,结果表明该吸附产物不仅具有磁性,而且具有很好的荧光性质。  相似文献   
8.
成功地合成了石墨烯/CdTe量子点复合物,并采用透射电镜、紫外吸收光谱、荧光发射光谱、荧光衰减曲线和X射线光电子能谱对产物进行了表征。透射电镜结果显示CdTe量子点被修饰于石墨烯的表面;X射线光电子能谱结果表示石墨烯在合成过程中被还原,还表明在所合材料的表面具有羧基和羟基;荧光发射光谱和荧光衰减曲线的结果显示将CdTe量子点修饰于石墨烯表面显著提高了CdTe量子点的荧光性能。此外,基于克伦特罗和石墨烯/CdTe量子点复合物之间形成的氢键,所合成材料可用于定量分析克伦特罗。克伦特罗对石墨烯/CdTe量子点复合物具有显著的猝灭作用,荧光强度的降低(F0/F)与克伦特罗之间存在良好的线性关系,线性范围为7.22~108.30 μmol·L-1,检出限为4 μmol·L-1。  相似文献   
9.
成功地合成了石墨烯/CdTe量子点复合物,并采用透射电镜、紫外吸收光谱、荧光发射光谱、荧光衰减曲线和X射线光电子能谱对产物进行了表征。透射电镜结果显示CdTe量子点被修饰于石墨烯的表面;X射线光电子能谱结果表示石墨烯在合成过程中被还原,还表明在所合材料的表面具有羧基和羟基;荧光发射光谱和荧光衰减曲线的结果显示将CdTe量子点修饰于石墨烯表面显著提高了CdTe量子点的荧光性能。此外,基于克伦特罗和石墨烯/CdTe量子点复合物之间形成的氢键,所合成材料可用于定量分析克伦特罗。克伦特罗对石墨烯/CdTe量子点复合物具有显著的猝灭作用,荧光强度的降低(F0/F)与克伦特罗之间存在良好的线性关系,线性范围为7.22~108.30μmol·L-1,检出限为4μmol·L-1。  相似文献   
10.
从理论上研究了一系列Ir(Ⅲ)[(C^N)2IrL]+[C^N=ppy, L=pzpy(1); C^N=dfppy, L=pzpy(2); C^N=ppy, L=pybi(3); C^N=tpy, L=acac(4); 其中ppy=2-苯基吡啶, dfppy=2-(2,4-双氟苯基)吡啶, pzpy=2-吡唑基吡啶, pybi=1-苯基-2-(吡啶基)-1H-苯并咪唑, tpy=2-(4-甲苯基)-吡啶, acac=乙酰丙酮]配合物的结构和光谱特征. 分别在B3LYP/LanL2DZ和CIS/LanL2DZ计算水平下优化了它们的基态和激发态结构. 计算得到的Ir-N, Ir-C和Ir-O基态键长和相应实验值符合较好. 在激发态下, Ir-N和Ir-C键长增加了约0.0003~0.003 nm, 而Ir-O键长则缩短了约0.0012 nm. 在含时密度泛函理论(TD-DFT)计算水平下, 结合极化连续介质模型(PCM), 得到配合物1~4的最低能的吸收和发射分别出现在398 nm(1), 370 nm(2), 419 nm(3)和437 nm(4)以及511 nm(1), 457 nm(2), 602 nm(3)和479 nm(4). 配合物1, 2, 4的跃迁属于d(Ir)+π(C^N)→π*(C^N)的电荷转移跃迁, 而化合物3的跃迁则归因于d(Ir)+π(C^N)→π*(pybi)的电荷转移跃迁. 这表明此类配合物的吸收和发射主要受前线分子轨道的金属成分控制, 同时也受辅助配体L的影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号