首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   3篇
化学   3篇
  2001年   2篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
光合反应中心原初电子转移机理的理论研究   总被引:1,自引:0,他引:1  
用量子化学密度泛函B3LYP方法在3-21G水平上计算细菌光合反应中心原初电子给体P960和绿色植物PSⅡ光合反应中心原初电子给体P680的电子结构,然后研究轴向配位的组氨酸残基和周围蛋白质环境的影响,最后探讨其原初电子转移机理。计算结果表明:(1)细菌光合作用反应中心原初电子给体P960-h的HOMO主要是由与M分支相连的组成单元上原子的原子轨道组成,而它的LUMO则两个组成单元上原子的原子轨道都有贡献;PSⅡ反应中心中原初电子给体P680的HOMO和LUMO均主要由与D1蛋白相连的组成单元上原子的原子轨道组成。这些计算结果能够从反应中心最核心的部分-原初电子给体的电子结构方面解释Rps.uiridis反应中心和PSⅡ反应中心原初电子转移只沿一个分支进行的的途径选择性。(2)虽然与细菌反应中心原初电子给体超分子P960的两个细菌叶绿素分子形成轴向配位的组氨酸残基His并未参与超分子P960-h的HOMO和LUMO的组成,但是由于其轴向配位,使得P960-h的ELUMO显著地升高到高于辅助细菌叶绿素和去镁细菌叶绿素的相应值,使得原初电子转移反应能够顺利进行。否则原初电子转移反应很难进行。PSⅡ反应中心的情况,与细菌反应中心十分相似。(3)细菌反应中心辅助细菌叶绿素(ABChlb)中的Mg离子与最近的组氨酸残基His中的N原子的距离和原初电子给体P960中的相应的Mg-N的距离相似,因此同样应该考虑此轴向配位的组氨酸残基,此时原初电子转移反应是沿L分支从P960-h经ABChlb到去镁细菌叶绿素(BPheob)的两步电子转移过程。而PSⅡ反应中心的辅助叶绿素不存在His的轴向配位,这应是与细菌反应中心的重要区别之一,此时原初电子转移应是沿Dl分支从P680-h到Pheoa的一步电子转移过程,但同时也不能完全排除从P680-h到AChla到Pheoa的二步电子转移过程。  相似文献   
2.
利用量子化学DFT从头计算方法,计算经过突变的细菌光合反应中心HM202L原始电子给体和其他色素分子的电子结构,然后对其原初电子转移机理进行探讨。结果表明:1)超分子D-2A的HOMO主要是由定域在其组成单元BChl~L分子上的原子轨道组成,而它的LUMO主要是由定域在其组成单元MBPheo~M分子上的原子轨道组成。这表明它在基态的激发态时分别存在超分子内的电荷分离态[BChl~L^--MBPheo~M^+]和[BChl~L^+-MBPheo~M^-]。同时也说明了D-2A阳离子态的正电荷完全分布在组成单元细菌叶绿素分子BChl~L上,与实验事实相符。2)HM202L细菌光合反应中心原初电子转移反应存在由ABCha~L^h^*驱动的电子转移反应。  相似文献   
3.
细菌光合反应中心Q~A和Q~B间电子转移反应的量子化学研究   总被引:1,自引:0,他引:1  
用量子化学半经验的AM1和密度泛函DFT(BELYP/6-31G(d))方法分别优化了质体醌MQ1(Q~A)、泛醌UQ1(Q~B)及其阳离子自由基的结构。用Nelsen方法计算了电子转移反应MQ1-UQ1→MQ1UQ^-~1的内重组能λi。用线性反应坐标方法构造了该电子转移反应的双势阱,两透热势能面在反应坐标R≈0.30处相交。对该电子转移体系进行闭壳层的单点计算,并用Koopmans定理计算了体系的分裂能△,得到△随线性反应坐标R的变化关系。结果表明,在R=0.342处△有一极小值,从而得到该电子转移反应的电子转移矩阵元Vrp,并由此确定了反应的过渡态。在此基础上,用两球模型计算了反应的溶剂重组能λ0。本文还计算了该电子转移反应的活化自由能△G。最后,根据Marcus电子转移理论计算了该反应的速率常数ket为5.93×10^4s^-^1,由此得到该反应的半衰期与文献报道的结果一致。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号