首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
化学   5篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
生物还原-化学沉淀耦合反应法制备了纳米硫化锌,采用XRD、SEM、TEM、EDS、PL、FTIR等测试手段对产物进行了结构形貌性能表征。结果表明,在加入与Zn2+等物质的量浓度的EDTA后,Zn2+对硫酸盐还原菌(SRB)的毒性消除,SRB的较快生长和SO42-的高效还原得以实现,EDTA修饰的生物转化-化学沉淀耦合系统可制备出高纯的纳米硫化锌晶体。制备的纳米ZnS实心微球体形状规则、分散均匀、大小一致,一次粒子直径10~15 nm,二次粒子直径400 nm左右。光致荧光光谱和红外光谱分析显示,ZnS纳米粒子在396 nm处出现荧光发射峰,在465 nm处出现缺陷发光峰,而且具有良好的红外透过性。分散剂聚丙烯酰胺(polyacrylamide)的加入导致产物ZnS的形貌和粒度改变,二次粒子的平均直径减至100 nm以下,其荧光发射峰强度增强,红外透过性提高。  相似文献   
2.
生物还原-化学沉淀耦合反应制备纳米硫化镉和硫化铅   总被引:1,自引:0,他引:1  
本文应用生物还原-化学沉淀耦合反应成功制备了高纯纳米硫化镉和硫化铅,EDTA(Ethylene Diamine Tetraacetic Acid)的加入为高浓度金属离子条件下的生物制备提供了保证。研究表明,在0.012 5~0.037 5 mol·L-1的较低浓度范围内镉浓度增加促进了硫酸根的生物还原和硫化镉的生物制备;但0.05 mol·L-1的高浓度镉则抑制了SRB的生物活性并降低了硫化镉的生成量。随着厌氧还原反应的进行,微溶的白色硫酸铅沉淀逐渐转化为不溶的黑色硫化铅沉淀,导致纳米硫化铅的生成。硫化镉微球的一次粒子约为10~20 nm,二次粒子平均粒径400 nm,PAM(polyacrylamide)的加入使得二次粒子分布更为均匀。硫化铅微粒二次粒子约为40 nm,PAM的加入没有改变粒子大小,但使得粒子形态由球形变为方形。生物还原-化学沉淀耦合反应对于金属硫化物的制备具有一定的普适性,因而显示出良好的应用前景。  相似文献   
3.
针对Sn4+易于水解而难以在水相稳定存在的不利条件,尝试了在水油两相体系中应用生物转化-化学沉淀耦合反应工艺制备SnS2纳米材料。研究了水油两相体系制备SnS2的优化条件,并借助XRD、SEM、EDS表征了制备材料的结构、形貌和物相。研究表明,生物水相pH值7、水油两相反应温度35℃,油相Sn4+与水相SO42-之物质的量浓度比1∶2的条件下有利于SnS2的生成。制备的SnS2为纳米片花瓣,纳米片平均厚度约为30 nm,花状微晶直径约1~5μm,纯度高,无杂质。  相似文献   
4.
 通过摇瓶实验研究了克雷伯氏菌 (S1) 和伯克霍尔德氏菌 (S2) 复合菌群 (简称 S) 降解三硝基甲苯 (TNT) 的特性和机理. 结果表明, 在外加碳源和氮源时, 100 mg/L TNT 在 16 h 内可被菌群 S 完全去除. 只外加碳源时, TNT 的最高去除率为 80%; 只加入氮源时, 仍可除去 12% 的 TNT. 在 S1 催化体系中检测到较高活性硝基还原酶的存在, 该酶催化 TNT 转化为缩合中间产物二硝基双偶氮甲苯, 其分子量为 326. 但是只有 S1 和 S2 共存才能产生高活性的甲苯双加氧酶和邻苯二酚 2,3-双加氧酶, 两类酶共同催化中间产物的开环分解. 伴随着二硝基双偶氮甲苯的开环分解, 硝基脱落生成 NO2–, 后者进一步氧化生成 NO3–. 通过 S1 和 S2 的协同作用, 实现了 TNT 的好氧开环和硝基脱落, 该结果表明在 TNT 生物催化降解中复合菌群比单一菌株更具优势和潜力.  相似文献   
5.
本文应用生物还原-化学沉淀耦合反应(CRBRCP-EDTA)制备出硫化镉纳米薄膜,并借助XRD和SEM对合成材料的物相、结构、形貌进行了表征。研究表明,以铝片为基底时CdS难以沉积,CdS纳米薄膜不能形成;以导电玻璃和单晶硅片为基底时CdS纳米薄膜方可生成。导电玻璃和单晶硅片薄膜都是双层结构,导电玻璃薄膜下层厚度大约40~50 nm,上层厚度大约450~500 nm,整体厚度大约500~550 nm;硅片薄膜的上下两层厚度基本相等,均为300 nm左右,而整体厚度达到600~650 nm。Cd2+浓度增加和分散剂PAM加入显著改善了导电玻璃薄膜质量,膜的致密性、均匀性和光催化活性都有所提高。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号