首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   4篇
化学   5篇
力学   1篇
数学   1篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2013年   1篇
  2012年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
利用地形平面图的数据和有关区域地质资料的数字化方法实现川藏公路典型路段三维地形的显示和实时浏览,为进一步利用地理信息系统进行研究区地层岩性、地质构造和地质灾害分布的叠加分析进行地质灾害研究提供了矢量化的地形底图。川藏公路典型路段的三维地形可视化工作对于川藏铁路的选线、绕避不良地质灾害的发生和开凿铁路隧道的位置选择等将会有一定的参考价值。  相似文献   
2.
CdS/石墨烯纳米复合物的可见光催化效率和抗光腐蚀行为   总被引:1,自引:0,他引:1  
严佳佳  王坤  许晖  钱静  刘巍  杨兴旺  李华明 《催化学报》2013,34(10):1876-1882
制备了一系列CdS纳米晶/石墨烯(CdS/GR)复合物,并在可见光照条件下评价了其光催化降解亚甲基蓝的光催化效率和抗光腐蚀行为. 研究表明,石墨烯的引入加速了CdS纳米晶(NCs)光生电子的迁移速率,抑制了其光生电子-空穴的复合,有效改善了其光催化降解有机污染物的性能. CdS/GR复合物中的石墨烯含量显著影响其光催化效率,其中石墨烯含量为4.6%的光催化剂效率最高,其光电流是CdS NCs的2.3倍. 利用光电化学和X射线衍射技术进一步证实,石墨烯的引入抑制了CdS NCs光腐蚀的发生,提高了CdS/GR复合物的光催化稳定性.  相似文献   
3.
光催化产氢可以直接将太阳能转化为化学能,是非常有前景的产氢技术之一.然而,光催化产氢的瓶颈在于如何提高光催化产氢效率和光催化剂的稳定性,以及降低产氢成本.因此,开发廉价、易于制备的产氢光催化剂引起人们广泛关注.作为一种非金属半导体光催化剂,石墨相氮化碳(g-C_3N_4)具有良好的物理化学性质,如良好的化学和热稳定性、极佳的光电性能、强的抗氧化能力等.更为重要的是,g-C_3N_4具有合适的能带结构,能够利用可见光.因此,g-C_3N_4已广泛应用于光催化降解、空气净化、光解水和光催化CO2还原等领域.然而,体相g-C_3N_4仍然暴露出一些缺点,例如比表面积小、光生电子-空穴对的复合率高和反应动力学差等.将体相g-C_3N_4剥离成g-C_3N_4纳米薄片是提高光催化效率的有效方法.薄层g-C_3N_4纳米片具有较高的比表面积,比体相的g-C_3N_4有更好的光生电子-空穴对分离效率.为了进一步提高g-C_3N_4的光催化性能,本文通过在薄层g-C_3N_4表面均匀分散Au纳米颗粒来控制电荷载流子的流动.并通过光催化产氢和污染物降解来评估金/薄层氮化碳(Au/monolayer g-C_3N_4)复合材料的光催化性能.所有的Au/薄层g-C_3N_4复合材料均显示出优于体相g-C_3N_4的光催化性能,其中1%Au/薄层g-C_3N_4复合光催化剂具有最高的产氢速率(565μmol g.1h.1),且具有最佳的污染物降解能力.这主要归结于热电子的注入,而不是肖特基结.Au纳米颗粒的成功引入带来了表面等离子共振(SPR)效应,SPR效应不仅能够提高光吸收效率,而且能够带来高效的热电子转移途径.热电子是从Au纳米颗粒表面注入到薄层g-C_3N_4纳米片的导带上.因此,Au/薄层g-C_3N_4复合光催化剂具有更高的光生电子-空穴对迁移和分离效率,以及更低的光生电子-空穴对复合几率.采用紫外可见光谱(UV-Vis)、光致发光光谱(PL)、光电流和阻抗等表征手段研究了Au/薄层g-C_3N_4复合光催化剂性能提升的原因.结果表明,相比于薄层g-C_3N_4纳米片,Au/薄层g-C_3N_4复合光催化剂具有更好的光电性能,因而光催化活性更高.此外,与薄层g-C_3N_4纳米片的光电流强度相比,Au/薄层g-C_3N_4复合光催化剂的光电流强度没有发生改变,这表明薄层g-C_3N_4纳米片导带上的光生电子不可能转移到Au纳米颗粒的表面.也就是说,肖特基结并没有参与到电子转移过程中,因此推测出整个光催化反应是热电子注入在起作用  相似文献   
4.
5.
具有易损坏储备部件复杂可修系统解的半离散化   总被引:3,自引:3,他引:0  
讨论了易损坏部件对系统的影响,且故障系统的修复时间是任意分布的.并对修复率μi(x)用初等阶梯函数进行逼近,给出了系统的半离散化模型,为进一步的数值计算打下基础.  相似文献   
6.
葛飞跃  黄树全  颜佳  景立权  陈烽  谢萌  徐远国  许晖  李华明 《催化学报》2021,42(3):450-459,中插31-中插34
光催化技术是一种绿色的化学技术,它可以利用取之不尽的太阳能来降解有毒污染物或者分解水产生氢气等.毋庸置疑,这项技术的核心是半导体光催化剂,在太阳光的照射下,半导体产生电子-空穴对,分别迁移至表面参与氧化还原反应.然而,半导体光催化剂中电子和空穴易快速复合以及其对太阳能中占主导的可见光利用率较低阻碍了其在实际中的应用.因此,解决这些问题,实现光催化技术的产业化应用,成为更多研究者关注的焦点.石墨相碳氮化物(g-C3N4)作为一种新型的聚合物半导体,因其来源丰富、合成简便、化学和物理性质稳定以及能带结构可调而吸引了研究人员的兴趣,但是它仍然存在上述问题.目前,提高g-C3N4光催化性能的方法大致有以下三种:改变形貌或进行元素掺杂以调节能带结构,与其他半导体复合构建异质结构来加速光生载流子的迁移,拓展可见光吸收范围.g-C3N4的光催化活性主要受自身骨架结构中的π电子传输影响,但π电子只能在波长<420 nm的高能量光下才能被激发.研究可知,设计N原子上孤对电子暴露于平面外部的氮化碳结构,在可见光激发下即可产生n-π*电子跃迁,获得显著增强的光吸收能力,从而提升光催化活性.然而,这些研究仅关注了g-C3N4中N原子上孤对电子形成的n-π*跃迁,并未研究外来材料杂原子上的孤对电子是否具有相似的作用.因此,利用合适的、含孤对电子的材料来修饰g-C3N4,也有可能获得类似的n-π*电子跃迁.本工作以含芳香环结构的噻吩基丙二酸(ThA)与尿素作为前驱体,通过热聚合方法合成了具有高效n-π*电子跃迁的CN-ThAx材料,并在可见光条件下,通过降解双酚A以及分解水实验测试其光催化性能.采用漫反射光谱(DRS)、光致发光光谱(PL)、理论计算、扫描电镜(SEM)、透射电镜(TEM)和X射线光电子能谱(XPS)等表征手段分析了催化剂的光学性质、微观形貌和结构特征.通过DRS、PL和理论计算分析可知,n-π*电子跃迁可提升CN-ThAx在450-550 nm区域的光学吸收,增强材料对可见光利用效率.SEM和TEM结果显示,ThA修饰并未改变g-C3N4的形貌,结合XPS结果可知,n-π*电子跃迁不是由g-C3N4中N原子的孤对电子引起的,而是由ThA中S元素的孤对电子引起的.光催化性能测试结果也表明,ThA修饰后的CN-ThAx在可见光下具有更优的光催化性能.因此,本研究为设计具有较高可见光利用率的氮化碳材料提供了新思路.  相似文献   
7.
以大田栽培的10年生银杏实生苗为试材,研究了自然条件下叶片衰老过程中叶绿素荧光动力学特性.结果表明:随着光温的日变化,衰老前期、中期和后期叶片的Fv/Fm、PIabs在一天中均先下降后上升,且低谷均出现在12点左右.衰老末期叶片的Fv/Fm也先下降后上升,低谷在12点左右,而PIabs在一天中几乎不变,维持在非常低的水平.随着叶片的衰老,Fv/Fm、PIabs、φEo和Ψo逐渐下降,表明衰老过程中PSⅡ的受体侧功能受到了伤害.ABS/RC和TRo/RC明显增加,ETo/RC几乎没有变化,DIo/RC也逐渐增加,RC/CS明显下降,表明随着叶片的衰老,PSⅡ的反应中心逐渐受到损伤,使PSⅡ的光能转化效率下降,导致过剩激发能增加.总之,随着叶片的衰老,光合机构被逐渐破坏,到衰老末期已发生不可逆损害.  相似文献   
8.
以盆栽三年生银杏实生苗为试材,研究了叶绿素荧光参数对温度变化的响应.结果表明:在5-30℃之间,Fo、Fm、Fv/Fm几乎没有变化,表明在此温度范围内叶片没有受到光抑制.φEo和φo随着温度降低而逐渐下降,表明降低温度使得PSⅡ反应中心受体侧相对电子传递速率降低.以室温25℃为对照,无论温度降低或升高,RC/CS均上升,而ABS/RC、TRo/RC、ETo/RC及DIo/RC均下降.说明25℃为银杏叶片进行光化学反应的最适温度.总之,5-30℃之间的温度对PSⅡ电子传递速率和PSⅡ反应中心能量分配影响很小.  相似文献   
9.
化石能源的过度使用造成CO2大量排放,导致了环境问题,同时引发了能源危机.新能源技术的快速发展为缓解上述问题提供了有效途径.光催化CO2转化技术因绿色环保、成本低廉、反应条件温和、操作安全可控而引起了研究者们的广泛关注.推动光催化CO2转化技术发展的关键在于高效光催化剂的精准设计与合成.目前,已经发展了多种光催化剂.铟基三元金属硫化物因具有合适的能带结构、较宽的吸光范围和独特的双金属位点而成为光催化CO2还原领域的研究热点之一.独特的双金属结构使其具有更丰富的活性位点,同时可以调控对关键中间体的吸附和解吸,进而提高CO2反应活性,并精准调控目标产物的选择性.然而,缓慢的电子传输行为和高载流子复合效率阻碍了CO2还原反应效率的提升,因此,目前距离实现光催化CO2还原技术的工业化应用仍有较大的差距.为了克服上述难题,科学家们对铟基三元金属硫化物进行了大量研究,以期通过修饰改性进一步提高催化效率和选择性.然而,目前有关铟基三元金属硫化物在光...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号