首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
  国内免费   3篇
化学   8篇
晶体学   1篇
力学   4篇
数学   4篇
物理学   22篇
  2023年   4篇
  2022年   7篇
  2021年   2篇
  2019年   5篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2007年   2篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
气溶胶垂直廓线是评估污染物来源、输送等途径的必要手段。气溶胶污染对环境和人体健康带来直接的影响。该研究于2019年4-5月,利用中国科学院大气物理研究所(39.98°N,116.39°E)的地基多轴差分光学吸收光谱(MAX-DOAS)仪,对北京地区春季大气光谱垂直廓线进行了观测。凭借MAX-DOAS实时、在线、连续的观测优势,能有效的对气溶胶进行监测。MAX-DOAS基于最优估算法(OEM)以及最小二乘光谱拟合法,并以辐射传输模型SCIATRAN作为前向模型,利用海德堡廓线(HEIPRO)算法反演得到气溶胶消光系数的垂直廓线,通过对气溶胶消光系数在其路径的积分获得气溶胶光学厚度(AOD)。利用地基太阳光度计观测的AOD和高塔观测的颗粒物质量浓度垂直廓线,分别与MAX-DOAS观测的AOD和气溶胶消光系数垂直廓线进行对比,验证MAX-DOAS算法的适用性。研究结果表明,MAX-DOAS与太阳光度计观测AOD结果,相关系数为0.92,斜率为0.89。三层气溶胶消光系数与PM2.5质量浓度的皮尔森相关系数从低处到高处分别达到0.69(60 m),0.77(160 m)和0.75(280 m)。并且,将气溶胶平均消光系数和对应三层(60,160和280 m)的PM2.5平均质量浓度对比,发现两者趋势一致。同样的,为了验证MAX-DOAS是否具备准确识别污染物的长距离输送的能力,我们通过Angstrom指数确定沙尘天气,通过计算梯度理查森数和边界层高度确定静稳天气,分析了在特殊天气条件下,MAX-DOAS能够对沙尘和静稳天气做出及时、准确的响应。分析气溶胶平均消光系数,发现气溶胶垂直廓线随高度升高呈现指数衰减变化的趋势,并且气溶胶消光系数均值在1.5 km高度处约为近地面的50%左右,而在1.5 km以上消光系数会随着高度的增加而快速减小。当高度达到2 km左右时,气溶胶消光系数均值下降到了0.1 km-1。以上结果表明MAX-DOAS探测大气气溶胶垂直廓线具有较高的适用性。  相似文献   
2.
基于表面等离激元共振(SPR)的原理,设计了一种具有矩形凹槽周期阵列微结构的金属增强基底。利用有限元方法对基底表面附近电场的分布进行了理论模拟分析,结果表明在SPR共振情况下,其凹槽微结构坑口处可得到强局域场,局域电场强度Emax/E0可达20。通过改变结构的周期、凹槽长度l、宽度w以及环境介质,SPR共振峰发生规律性的移动,波长覆盖范围为500~1 000nm。入射光沿x方向偏振的情况下,随着结构x方向周期Px的增加,SPR共振峰明显红移。当入射光波长与Px相当时,观察到凹槽内局域电场突然减小的现象。这是由于满足了波矢匹配条件,传播型SPP被激发导致的。改变凹槽长度l,发现共振波长随l的增加红移,近似呈线性关系。环境介质折射率的增加也会引起共振峰的红移。而凹槽宽度w的增加将导致其蓝移。这种规律性的移动为实现共振波长的调控提供了途径。受Jain研究报道的启发,矩形凹槽结构可以等效为两对偶极耦合模型的组合,从而解释SPR共振峰随结构参数变化而发生的移动。  相似文献   
3.
基于空芯光纤(HCF)的气体激光器是实现中红外激光输出的一种有效手段,一般情况下,跃迁选择定则决定一条泵浦吸收谱线对应两条激射跃迁谱线。通过气压控制的方法实现了单一谱线的4.3μm单程结构HCF HBr激光器。以自研的1958 nm连续波高功率窄线宽掺铥光纤放大器为泵浦源,泵浦一段5 m长、充低压HBr气体的反共振HCF,通过气压控制分别实现了同位素H79Br和H81Br单一谱线4.3μm的激光输出,最大激光功率为350 mW,总的光光转换效率约为8%。利用自行搭建的光纤扫描装置测量了输出激光光斑,结果表明其是一种基模。  相似文献   
4.
周磊  姜亚成  朱哲明  董玉清  牛草原  王蒙 《爆炸与冲击》2021,41(5):053102-1-053102-11
为深层次了解裂隙岩体在动载荷作用下的动态断裂特性及止裂机理,采用TWSRC(tunnel with single radial crack)构型进行中低速冲击实验,选择砂岩作为原材料制作裂隙岩体试样,以落锤冲击试验装置与裂纹扩展计实验系统对裂纹的动态起裂、扩展及止裂过程进行全过程监测,重点研究动态破裂过程的破裂行为及止裂现象。使用有限差分法程序进行数值模拟,验证冲击实验结果的科学性与准确性。研究发现:裂隙岩体的动态断裂过程是由起裂加速-高速扩展-缓慢减速-止裂-再次起裂加速-再次高速扩展等多次循环的过程构成,且止裂区间尺寸为微秒量级;裂隙岩体止裂位置的穿晶断裂比例远小于初始起裂点,青砂岩动态断裂过程的穿晶断裂比例稍大于黑砂岩;裂隙岩体中止裂点再次起裂所需的能量,远小于预制裂纹初始起裂所需要的能量。  相似文献   
5.
王蒙  张强成  李耀军 《应用声学》2014,22(10):3253-32553258
通过对10M1553B总线通讯控制器的特性进行分析,再结合10M1553B总线通讯控制器的A、B总线通道切换测试及通讯强度测试的测试指标,提出了相应的测试验证系统方案;通过对测试验证结果的研究与分析,证实10M1553B总线通讯控制器具有较好的品质,能够在一定程度上替代国外的同类产品;同时针对10M1553B总线通讯控制器所设计的测试验证系统方案、各测试指标所对应的测试方法和通过准则,对于其它类似产品的系统级综合测试具有普遍性、适用性和指导性;并通过实际测试验证了该测试验证系统的可靠性和稳定性。  相似文献   
6.
采用分离式霍普金森压杆(SHPB)系统,对砂岩进行不同速度下的冲击试验,得到砂岩的应变率效应特征以及典型的动态本构曲线。该曲线分为近似线弹性阶段、塑性阶段、塑性增强阶段和正向卸载阶段。通过组合模型的方法,构建了砂岩含损伤的动态本构模型,借助LS-DYNA软件中的用户材料子程序UMAT接口实现对本构模型的二次开发,并对砂岩在冲击速度为7.5、9.5、11.5和13.5 m/s 4种情况下的SHPB动态冲击压缩试验进行模拟。结果表明:所构建的模型可以很好地描述砂岩的应变率效应和应力-应变曲线弹性段,并且动态峰值强度、最大应变均与试验结果一致,应变率、峰值强度、最大应变与试验结果的相对误差不超过10%。所构建的砂岩动态本构模型能够准确地描述砂岩在冲击作用下的动态力学特性。  相似文献   
7.
采用基于密度泛函理论的第一性原理平面波超软赝势法计算了不同浓度Mn掺杂GaN(Ga1-xMnxN, x=0.0625和0.1250)的晶格常数、能带结构和态密度,分析比较了掺杂前后GaN的电子结构和磁性。结果表明:Mn掺入后体系仍为直接带隙半导体,带隙宽度随Mn含量的增加逐步增大。Mn掺杂GaN均使得N 2p与Mn 3d轨道杂化,产生自旋极化杂质带,自旋向上的能带占据费米面,掺杂后的Ga1-xMnxN表现为半金属铁磁性,适合自旋注入;随着Mn掺杂浓度的增加,体系的半金属性有所增强。  相似文献   
8.
易错两例     
王蒙  张忠 《中学生数学》2011,(15):44+27
在平时的学习中,我们由于对问题思考不全面或对知识不能很好的掌握,导致经常犯这样或那样的错误,下面我们就以下两道题的错误,谈谈对这些问题处理的策略.  相似文献   
9.
冷凝法油气回收技术与应用   总被引:2,自引:2,他引:0  
油品在储运和销售过程中部分轻烃组分挥发进入大气,造成资源浪费和环境危害.油气回收既可实现油气污染治理又能产生可观的经济效益.结合中国油气储运和销售环节的现状以及相关技术的发展,对几种油气回收的方法进行了对比分析,认为采用多元工质复叠(或自复叠)制冷技术的冷凝法具有较好的经济性和可靠性.介绍了自主研发的冷凝式油气回收设备...  相似文献   
10.
于歌  杨慎华  王蒙  寇淑清  林宝君  卢万春 《物理学报》2012,61(9):92801-092801
激光裂解技术能够极大改善发动机缸体主轴承座的加工质量并显著提高加工效率. 为探寻Nd:YAG激光烧蚀球墨铸铁材料裂解槽的裂解性能, 本文基于有限元法成功构建了发动机缸体主轴承座激光裂解加工过程仿真模型, 针对QT500-7球墨铸铁主轴承座的裂解参数进行了仿真分析. 研究结果表明: 在影响裂解质量的三个裂解槽几何参数中, 槽深较张角及曲率半径对裂解载荷的影响效应更为明显; 裂解载荷随槽深的增加而迅速降低, 随槽张角和曲率半径的增加而升高; QT500-7球墨铸铁发动机缸体主轴承座激光裂解加工优化参数应为裂解槽深选为0.5 mm, 裂解槽张角选为60o, 裂解槽半径选为0.2 mm. 有限元模拟分析结果得到了单向拉伸实验结果的验证. 本工作通过ABAQUS仿真模拟及大量裂解载荷试验确立了裂解槽几何形状的优化参数, 为显著降低裂解载荷和优化裂解工艺提供了数值参考, 有利于实现发动机缸体加工的快速发展, 从而促进汽车工业实现绿色制造.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号