首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   7篇
化学   7篇
  2021年   2篇
  2018年   4篇
  2017年   1篇
排序方式: 共有7条查询结果,搜索用时 109 毫秒
1
1.
光催化作为节能、清洁的环境处理技术,被广泛应用于污染物处理领域,如室内气体净化、尾气VOCs处理和水体有机污染降解等.在众多光催化剂中,TiO2以其良好的化学稳定性、无二次污染、无刺激性和安全无毒等优势得到广泛研究.然而TiO2是宽禁带材料,仅能吸收太阳光谱的紫外光部分,通常需要用紫外光源来激发,光生电子-空穴易复合,这限制了其应用.过渡金属离子掺杂能在TiO2价带之上形成新的掺杂能级,从而提高其光谱响应范围,提高全光谱反应活性; 与体相TiO2相比,纳米尺寸的TiO2具有更高的光催化活性,尤其小于10 nm的量子点尺寸TiO2有着高活性面积、较短的光生电子-空穴迁移路径和独特的量子尺寸效应; Fe2O3作为吸附材料与TiO2构建复合材料能够发挥吸附与光催化协同作用,从而提高污染物处理效率.我们以构建Fe掺杂TiO2和Fe2O3量子点共负载催化剂为目标,以钛酸四丁酯(TBT)和硫酸亚铁为前驱体,采用常温水解方法将Fe掺杂的TiO2量子点生长在MCM-41分子筛表面,并通过调节硫酸亚铁加入量合成了MCM-41负载的Fe掺杂TiO2和Fe2O3量子点催化剂.采用透射电子显微镜和X射线衍射研究了复合晶体结构,采用X射线光电子能谱、紫外-可见光谱和傅里叶变换红外光谱等表征手段研究了复合量子点材料生长机理和能带结构.结合吸附过程和光降解过程建立了吸附与光催化协同作用与污染物处理效率之间的关联关系.表征结果表明,硫酸亚铁水溶液加速TBT水解成功地在MCM-41表面生长了Fe掺杂TiO2量子点,并且量子点粒径随Fe前驱体量的增加而变大; 前驱体比例Ti/Fe ≤ 3.0时,过量的硫酸亚铁会析出并在焙烧过程中在MCM-41上分解为Fe2O3量子点,Fe2O3量随着硫酸亚铁加入量提高而增多.通过调节Fe前驱体的量,一方面Fe掺杂在二氧化钛价带之上形成了掺杂能级,减小了带隙,拓宽了光响应范围,另一方面引入适量Fe2O3量子点,实现了Fe掺杂TiO2和Fe2O3量子点共负载催化剂的构建.复合材料实现了吸附过程与光催化降解过程的协同作用,Fe2O3将污染物富集于催化剂表面,Fe掺杂TiO2将其有效降解,大大提高了污染物处理能力,其中FT/M-3.0处理效率最高,并在10次循环处理后依然维持较高的吸附能力和光催化降解能力.该工作为高效光催化水处理催化剂的设计和构建提供了新思路和策略.  相似文献   
2.
TiO2具有高效、廉价、无毒及光化学稳定性好等优点,因而被广泛应用于光能转化和利用领域,如太阳能电池、光催化分解水制氢和环境污染物降解等.但是,TiO2仍然存在一些缺陷制约了其应用,其中,最关键的问题是光生电荷分离效率低.因此,人们对其进行了掺杂、异质结构建和Z型结构建等来解决这一问题,其中Z型结近年来备受关注.全固体Z型结的构建目前主要有两种方式:PSI-C-PSII和PSI-PSII.前者PSI与PSII间要插入中间导电层(如Au、rGO等)来实现界面欧姆接触;后者则无中间层,而是基于界面设计来实现欧姆接触.本文以构建PSI-PSII Z型结为目标,以TiO2和WO3为基础半导体材料,采用原位溶剂热生长的方法构建WO3量子点/TiO2结构,借助氢气还原反应在界面处引入氧缺陷.采用透射电子显微镜、X射线衍射和拉曼光谱研究了复合晶体结构,采用X射线光电子能谱、紫外可见光谱和荧光光谱等手段研究了Z型结的界面结构和能带结构.结合光催化分解水产氢活性来建立Z型结结构与光催化性能的关联关系.表征结果表明,在TiO2上进行原位溶剂热成核反应可点缀WO3量子点,并且量子点粒径随W前驱体用量的增加而变大.两种半导体材料为TiO2锐钛矿和WO3晶体结构,且WO3的XRD特征峰和Raman特征吸收峰会随W前驱体用量增加而变大.通过对WO3/TiO2进行氢气还原处理,使其表面形成大量W5+和氧缺陷,一方面提高了催化剂对可见光的吸收,另一方面在界面形成欧姆接触,实现了Z型结构的构建.Z型结构实现了光催化分解水产氢反应,其中WTH10光催化活性最好.本文为新型Z型光催化剂的设计和构建提供了新思路和策略.  相似文献   
3.
张靖雯  潘伦  张香文  史成香  邹吉军 《催化学报》2021,42(7):1168-1175,中插42-中插45
聚合物氮化碳(C3N4)因具有可见光响应特性、良好的化学稳定性、无毒性等优点而成为一类极具吸引力的光催化剂.遗憾的是,由于本征库仑相互作用,C3N4中的光生电子和空穴通常以激子的形式存在,导致迁移到表面的光生电子和空穴数量减少,从而降低了光催化活性,因此人们做了大量的研究工作来促进激子解离成自由电子和空穴.D-A体系可以诱导内部电场的产生,从而促进激子解离成自由电子和空穴,因此,构建供体-受体(D-A)体系是一种有效地促进激子解离的方法.然后在内电场作用下,自由电子和空穴也能够更加容易地转移到共聚物表面,从而发生相应的光催化还原和氧化反应.本文选择了2-氨基-4,6-二氯嘧啶(C4H3Cl2N3)作为单体,与三聚氰胺共聚形成分子内共聚物(CNClx)来构建D-A体系.由于分子结构相似,C4H3Cl2N3与C3N3(NH2)3分子具有良好的化学相容性.在共聚过程中,C4H3Cl2N3在219~222℃升华,三聚氰胺在300℃升华,在温度继续升高到550oC的过程中,气相混合物充分混合并发生共聚反应.在共聚过程中,如果C4H3Cl2N3分子与C3N3(NH2)3反应,那么三聚氰胺沿着这个方向的聚合将终止,因此吸电子-Cl基团将全部位于共聚分子的末端.相较于体相C3N4,CNClx样品活性均有所提高,且随着-Cl基团数量的增加,CNClx样品活性先提高后降低,其中CNCl0.15样品活性最高.CNCl0.15在可见光下的析氢速率是体相C3N4的15.3倍,在420 nm处的表观量子效率为13.6%.对RhB,MO和苯酚的降解速率分别为体相C3N4的5.82,7.93和9.53倍.构建分子内D-A体系以后,C3N4活性提高主要是因为随着末端-Cl基团的增加,材料的吸光能力和激子解离效率提高.而且-Cl基团也可以充当电子的俘获位点,浓度进一步升高会降低电荷转移的效率使活性降低.EIS的奈奎斯特图和i-t曲线结果表明,CNCl0.15的电弧半径最小,光电流最大,说明其具有最低的电阻和最高的载流子传输效率.紫外光电子能谱测试结果表明,CNClx功函数值较小,电子更容易在内部电场的作用下移动到表面,而过量的-Cl基团增加了CNCl0.2的功函数值,导致CNCl0.2样品的光催化活性降低.  相似文献   
4.
摘要:光催化作为节能、清洁的环境处理技术,被广泛应用于污染物处理领域,如室内气体净化、尾气VOCs处理和水体有机污染降解等.在众多光催化剂中,Ti O_2以其良好的化学稳定性、无二次污染、无刺激性和安全无毒等优势得到广泛研究.然而Ti O_2是宽禁带材料,仅能吸收太阳光谱的紫外光部分,通常需要用紫外光源来激发,光生电子-空穴易复合,这限制了其应用.过渡金属离子掺杂能在Ti O_2价带之上形成新的掺杂能级,从而提高其光谱响应范围,提高全光谱反应活性;与体相Ti O_2相比,纳米尺寸的Ti O_2具有更高的光催化活性,尤其小于10 nm的量子点尺寸Ti O_2有着高活性面积、较短的光生电子-空穴迁移路径和独特的量子尺寸效应;Fe_2O_3作为吸附材料与Ti O_2构建复合材料能够发挥吸附与光催化协同作用,从而提高污染物处理效率.我们以构建Fe掺杂Ti O_2和Fe_2O_3量子点共负载催化剂为目标,以钛酸四丁酯(TBT)和硫酸亚铁为前驱体,采用常温水解方法将Fe掺杂的Ti O_2量子点生长在MCM-41分子筛表面,并通过调节硫酸亚铁加入量合成了MCM-41负载的Fe掺杂Ti O_2和Fe_2O_3量子点催化剂.采用透射电子显微镜和X射线衍射研究了复合晶体结构,采用X射线光电子能谱、紫外-可见光谱和傅里叶变换红外光谱等表征手段研究了复合量子点材料生长机理和能带结构.结合吸附过程和光降解过程建立了吸附与光催化协同作用与污染物处理效率之间的关联关系.表征结果表明,硫酸亚铁水溶液加速TBT水解成功地在MCM-41表面生长了Fe掺杂Ti O_2量子点,并且量子点粒径随Fe前驱体量的增加而变大;前驱体比例Ti/Fe≤3.0时,过量的硫酸亚铁会析出并在焙烧过程中在MCM-41上分解为Fe_2O_3量子点,Fe_2O_3量随着硫酸亚铁加入量提高而增多.通过调节Fe前驱体的量,一方面Fe掺杂在二氧化钛价带之上形成了掺杂能级,减小了带隙,拓宽了光响应范围,另一方面引入适量Fe_2O_3量子点,实现了Fe掺杂Ti O_2和Fe_2O_3量子点共负载催化剂的构建.复合材料实现了吸附过程与光催化降解过程的协同作用,Fe_2O_3将污染物富集于催化剂表面,Fe掺杂Ti O_2将其有效降解,大大提高了污染物处理能力,其中FT/M-3.0处理效率最高,并在10次循环处理后依然维持较高的吸附能力和光催化降解能力.该工作为高效光催化水处理催化剂的设计和构建提供了新思路和策略.  相似文献   
5.
通过硝基芳烃选择性加氢能高效地制备芳香胺和环胺,其中芳香胺作为重要的化工中间体应用于多个领域(精细化工、商业产品和聚合物).在加氢反应过程中,硝基的还原伴随着生成一些副产物(如亚硝基和偶氮化合物).同时对于含还原性基团的取代硝基苯,硝基的选择还原也面临着很大的挑战.金属钴是常用的硝基加氢催化剂活性成分,但是由于对反应底物的过度吸附,导致其选择性不高.早期研究发现,氮掺杂碳催化剂能有效吸附硝基基团,从而在硝基苯加氢中表现出一定活性,但对分子氢的活化不足.因此,氮掺杂碳作为吸附材料与钴构建复合催化剂,能够发挥吸附和活化氢的协同作用,从而高效催化硝基苯加氢.基于此,本课题组发展了一种制备方法,可将钴颗粒尺寸限制在10 nm左右,且包覆在氮掺杂碳中,并应用于对硝基苯酚的室温选择性加氢反应中,发现相较于碳负载钴和氮掺杂碳催化剂,所制催化剂在室温下表现出了很好的活性和选择性.在此基础上,本文采用元素分析、X射线光电子能谱(XPS)和拉曼光谱(Raman)等手段对催化剂形貌和结构进行了研究.表征结果表明,保持钴前驱体的量不变,随着氮化碳加入量的增加,催化剂中氮掺杂浓度提高;当氮化碳/钴1时,氮掺杂浓度不变.红外结果表明,与普通碳载体相比,氮掺杂碳对硝基苯有很强的吸附作用,而氮掺杂碳包覆的钴催化剂也表现出同样的结果.通过调节氮的掺杂浓度,一方面可以修饰碳载体的电子结构,增加表面缺陷的浓度,提高与反应底物的相互作用;另一方面可以促进电子由钴颗粒转移至与之相连的氮原子上,因此进一步促进钴颗粒对分子氢的活化作用.该复合结构的催化剂实现了底物吸附和氢活化的协同作用,氮掺杂碳将反应底物吸附在表面,钴颗粒活化氢,随后解离的氢原子与表面吸附物反应,从而实现硝基苯的高效加氢.其中Co@NC-1催化活性最高,并在循环套用10次后,仍维持较高的催化活性,同时对含其它取代基的硝基苯均表现很高的活性和选择性.  相似文献   
6.
化石燃料的枯竭和不断增长的能源需求给人类带来巨大的挑战,加之能源消耗过程带来的环境问题使得开发清洁可再生绿色能源迫在眉睫.氢能具有零排放、可再生、能量高和来源广等特点,且可通过化石能源和电解水制取,是未来人类最理想的替代能源之一.相较于化石能源制氢,电解水制氢被认为是一种最有前途的清洁制氢技术,能够将可再生能源(例如太阳能和风能)产生的剩余电能以化学能的形式存储起来.电解水反应由发生在阴极的析氢反应与发生在阳极的析氧反应组成.其中,析氧反应涉及多个质子和电子转移,反应动力学缓慢严重限制了其水分解的整体效率.为满足实际应用,亟待开发低成本、高催化活性和在工业电解条件(60~80℃,20%~30% KOH,400 mA·cm-2)下长期稳定性强等特性的析氧催化剂.本文报道了一种用于析氧反应的自支撑泡沫镍铁自支撑的镍铁层状双金属氢氧化物-二硫化钼(NiFe LDH-MoSx/INF)集成电极,在正常碱性测试条件(25℃,1 M KOH)和模拟工业电解条件(65 ° C,5 M KOH)下均表现出优异的催化性能.优化后的电极在一般碱性测试条件下,过电势仅需195和290 mV即可达到100和400 mA·cm-2的电流密度.在模拟工业电解条件下达到相同的电流密度,过电势只需156和201 mV.在两种条件下进行长期稳定性测试,催化剂均未观察到明显的失活现象.在两电极体系(NiFe LDH-MoSx/INF ‖ 20%Pt/C)全解水测试中,达到100 mA·cm2的电流密度仅需1.72 V的电压.还使用NiFe LDH-MoSx/INF作为阳极催化剂构建膜电极并评价其阴离子交换膜电解水的性能:在400 mA·cm-2的电流密度下能量转换效率(60℃,1 M KOH)为71.8%.综上,原位生长策略保证了此类电极的长期稳定性.硫化基底的存在可以控制NiFe LDH的生长厚度,从而提高集成电极的整体导电性.另外,MoSx的引入进一步调节了NiFe LDH的电子结构,进而优化了反应中间体的吸附能及状态.在模拟工业操作条件下进行的电化学测试进一步证实了多孔三维自支撑NiFe LDH-MoSx/INF集成电极具有在工业电解水中大规模应用的前景.本文为合理设计用于工业阴离子交换膜水电解的非贵金属析氧催化剂提供新的策略.  相似文献   
7.
高密度喷气燃料是为先进航空航天飞行器而合成的燃料,以生物质基原料制备高密度喷气燃料符合国家可持续发展战略并可拓展燃料来源。本文综述了近年来由生物质基原料制备高密度喷气燃料的研究进展,燃料种类包括链烷烃、带支链的单环烷烃以及多环烷烃,燃料合成原料包括环酮(醇)、呋喃醛(醇)、芳香族含氧化合物(苯酚、苯甲醚、愈创木酚)、蒎烯等生物质及其平台化合物。发动机的推进性能高度依赖于所用燃料的性能,其中,最重要的性能是密度和低温性能。本文总结了典型燃料的性能以讨论分子结构的影响,增加燃料分子中环的个数会增加燃料密度但是也会导致低温性能不期望的变化,引入支链可改善低温性能。同时讨论了烷基化、缩合、加成、加氢脱氧等燃料合成反应涉及的催化剂、反应机理及其调控等关键因素,最后对由生物质基原料合成高密度喷气燃料的发展趋势进行了展望。本文将有助于探索及发展高密度燃料合成的方法及工艺。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号