首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
化学   5篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
张珍珍  李鑫恒 《分子催化》2019,33(4):382-390
甲醛(HCHO)作为挥发性有机物(Volatile Organic Compounds,VOCs),其催化氧化技术具有起燃温度低、设备简单、净化效率高等优点,被广泛采用,催化氧化催化剂主要为贵金属以及过渡金属氧化物.我们综述了近年来催化氧化甲醛的最新研究进展,尤其是甲醛催化氧化机理和提高催化活性的策略.最后,对催化氧化技术在甲醛催化氧化反应中的未来发展方向和趋势进行了展望.  相似文献   
2.
氧化亚铜(Cu_2O)是一种重要的P型半导体,并且具有无毒、廉价和易于控制合成等优点,被广泛应用于光催化领域.然而,低的光催化性能极大地限制了它的应用,特别是氧化亚铜立方体表面存在的障碍层严重阻碍了光生载流子传输,导致其几乎没有光催化活性.构建异质结构是提高氧化亚铜光催化性能的有效手段,然而,目前氧化亚铜异质结构的光催化性能和稳定性仍然需要大幅地提高.我们的前期研究发现,通过乙二胺在氧化亚铜表面轻微氧化刻蚀形成CuO/Cu_2O异质结构,在提高一定的光催化活性的同时能够大幅提高其稳定性.另外,在氧化亚铜表面负载金纳米颗粒也能够有效地增强氧化亚铜的光催化性能.因此,协同氧化铜和金纳米颗粒应该能够同时大幅地提高氧化亚铜的光催化活性和稳定性.本文利用乙二胺对氧化亚铜立方体进行轻微的氧化刻蚀,然后光还原负载金纳米颗粒,成功地制备了Au/CuO/Cu_2O异质结构. TEM和SEM结果表明,氧化铜和金纳米结构随机均匀地分散在氧化亚铜表面. XPS数据表明, Au/CuO/Cu_2O异质结构表面的二价铜主要来自生成的氧化铜纳米结构.表面残存的N元素表明,氧化铜由一价铜与乙二胺形成的配合物转变而来.在可见光下光催化降解甲基橙实验结果显示, Au/CuO/Cu_2O异质结构的光降解速率大幅地提高.通过表观量子效率的估算发现, Au/CuO/Cu_2O异质结构光催化活性是纯Cu_2O的123倍, Au/Cu_2O的5.4倍.光电流测试中, Au/CuO/Cu_2O异质结构的光电流也都明显高于Cu_2O, Au/Cu_2O和CuO/Cu_2O.不仅如此, Au/CuO/Cu_2O异质结构在8个循环后还能维持80%的光催化活性,远高于Au/Cu_2O的5个循环.由此可见, Au/CuO/Cu_2O异质结构具有增强的光催化活性和稳定性.通过电子顺磁共振(ESR)自由基测试发现,光催化降解过程中,羟基自由基是主要的氧化物种,而且Au/CuO/Cu_2O异质结构的自由基信号强度明显高于Cu_2O和CuO/Cu_2O,这也说明金和氧化铜的双异质结构提高了体系载流子分离效率. PL数据进一步证实了这一结论.另外,比表面积和暗吸附实验数据表明,轻微的表面积增加不会显著地改变三元异质结构的吸附和光催化性能.根据UV-Vis和价带XPS数据,我们认为轻微光吸收变化和价带改变不会显著影响异质结构的光催化活性.因此,金和氧化铜纳米结构协同增强光生载流子分离效率,是提高氧化亚铜光催化活性的主要原因.首先, Au/Cu_2O异质结构通过肖特基结和金颗粒的表面等离子共振效应提高光生载流子的分离效率.其次,氧化铜纳米结构不仅能与氧化亚铜形成II型异质结构,而且还能够作为保护层提高氧化亚铜的稳定性.另外,氧化铜纳米结构生成过程中去除了表面障碍层,减少空穴在氧化亚铜上的累积,进而提高氧化亚铜的稳定性.总之,氧化铜和金纳米结构的协同效应显著提高了体系的光催化活性和稳定性.  相似文献   
3.
提高光催化剂在光照射下产生的电子/孔穴分离效率是一个关键的科学问题之一,目前也是一个很大的挑战. 最近,在纳米尺度, 通过材料设计, 在窄带半导体上沉积助催化剂(比如引进双助催化剂)形成异质结构, 能够建立内建电场, 从而使电子和空穴快速分离和传输, 显示出很好的可见光量子效率. 对于异质结构, 纳米结构半导体如硫化镉具有表面积大、规整形貌、电子和空穴迁移路径短等优势. 用纳米半导体硫化镉制备异质结构光催化剂已有很多报道, 大多数研究集中于单一助催化剂来提高光催化活性, 对于纳米结构的设计制备研究较少; 对于稳定性研究, 侧重于利用超薄碳膜包敷策略来提高光催化的稳定性. 因此, 复杂纳米异质结构的精准合成和稳定性仍是个不小的挑战. 我们研究组发展了一种催化剂制备方法, 可选择性地将Au纳米颗粒和PdS纳米颗粒分别沉积于一维硫化镉纳米棒的两端, 并将所制备的催化剂应用于可见光光催化分解水制氢反应中.本文报道了一种高选择性沉积助催化剂的新方法, 制备了PdS-CdSe@CdS-Au一维纳米异质结构. 首先用高温分解法和种子法制备了核壳结构的CdSe@CdS纳米棒, 预先沉积纳米金在纳米棒的一端, 然后PdS通过阳离子交换法高度选择性地沉积到纳米棒的另一端, 形成火柴棒纳米结构. HRTEM结果显示Au和Pd分别高选择性地沉积在纳米棒顶的两端, 助催化剂和纳米棒之间有一个清晰的界面, 非外延生长. 紫外-可见吸收光谱显示, Au和PdS与CdSe@CdS纳米棒之间有很强的电子耦合效应, 相应的荧光光谱也显示, 顶端的助催化剂使CdSe@CdS发生强的荧光淬灭效应. 将PdS-CdSe@CdS-Au一维纳米异质结构用于光催化分解水制氢, 发现5 h内产氢达到1100 μmol, 是相应Au-CdSe@CdS催化剂产氢速率的2个数量级.同时考察了它的光催化稳定性, 发现双助催化剂形成的火柴棒型纳米结构稳定性大大提高, 经过4 h光照仍能保持很好的形貌.通过对照实验考察了PdS-CdSe@CdS-Au一维纳米异质结构的形成机理. 一端金纳米颗粒的形成主要是由于顶端曲率的Gibbs-Thompson效应和纳米棒顶端组成分布不对称的缘故, 而PdS的顶端高选择性沉积是在阳离子交换过程中两端化学性质发生变化等原因造成的. 最后提出了光催化性能提高机理, 主要是由于电子和空穴在一维纳米棒上快速向相反方向分离和传输, 既大大提高了光催化制氢效率, 也大大提高了光催化稳定性.  相似文献   
4.
提高光催化剂在光照射下产生的电子/孔穴分离效率是一个关键的科学问题之一,目前也是一个很大的挑战.最近,在纳米尺度,通过材料设计,在窄带半导体上沉积助催化剂(比如引进双助催化剂)形成异质结构,能够建立内建电场,从而使电子和空穴快速分离和传输,显示出很好的可见光量子效率.对于异质结构,纳米结构半导体如硫化镉具有表面积大、规整形貌、电子和空穴迁移路径短等优势.用纳米半导体硫化镉制备异质结构光催化剂已有很多报道,大多数研究集中于单一助催化剂来提高光催化活性,对于纳米结构的设计制备研究较少;对于稳定性研究,侧重于利用超薄碳膜包敷策略来提高光催化的稳定性.因此,复杂纳米异质结构的精准合成和稳定性仍是个不小的挑战.我们研究组发展了一种催化剂制备方法,可选择性地将Au纳米颗粒和PdS纳米颗粒分别沉积于一维硫化镉纳米棒的两端,并将所制备的催化剂应用于可见光光催化分解水制氢反应中.本文报道了一种高选择性沉积助催化剂的新方法,制备了PdS-CdSe@CdS-Au一维纳米异质结构.首先用高温分解法和种子法制备了核壳结构的CdSe@CdS纳米棒,预先沉积纳米金在纳米棒的一端,然后PdS通过阳离子交换法高度选择性地沉积到纳米棒的另一端,形成火柴棒纳米结构.HRTEM结果显示Au和Pd分别高选择性地沉积在纳米棒顶的两端,助催化剂和纳米棒之间有一个清晰的界面,非外延生长.紫外-可见吸收光谱显示,Au和PdS与CdSe@CdS纳米棒之间有很强的电子耦合效应,相应的荧光光谱也显示,顶端的助催化剂使CdSe@CdS发生强的荧光淬灭效应.将PdS-CdSe@CdS-Au一维纳米异质结构用于光催化分解水制氢,发现5 h内产氢达到1100mmol,是相应Au-CdSe@CdS催化剂产氢速率的2个数量级.同时考察了它的光催化稳定性,发现双助催化剂形成的火柴棒型纳米结构稳定性大大提高,经过4 h光照仍能保持很好的形貌.通过对照实验考察了PdS-CdSe@CdS-Au一维纳米异质结构的形成机理.一端金纳米颗粒的形成主要是由于顶端曲率的Gibbs-Thompson效应和纳米棒顶端组成分布不对称的缘故,而PdS的顶端高选择性沉积是在阳离子交换过程中两端化学性质发生变化等原因造成的.最后提出了光催化性能提高机理,主要是由于电子和空穴在一维纳米棒上快速向相反方向分离和传输,既大大提高了光催化制氢效率,也大大提高了光催化稳定性.  相似文献   
5.
吴丽琼  郝利花  李鑫恒 《应用化学》2016,33(11):1340-1342
利用废弃蟹壳做模板制备的具有均一孔道结构的介孔碳材料做载体,在孔道内限域原位合成四氧化三铁氧化物纳米颗粒。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)表征了材料的结构和性能。结果表明,孔道结构呈整体式结构,孔直径在40~50 nm,长50~200μm。纳米颗粒为四氧化三铁,粒径在10 nm左右,尺寸单分散性好,可均匀分散在介孔孔道内。该方法工艺路线简单,绿色环保。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号