首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   5篇
化学   8篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 62 毫秒
1
1.
共沉淀法制备了Ru-Zn催化剂,考察了反应修饰剂ZnSO4和预处理对苯选择加氢制环己烯Ru-Zn催化剂性能的影响。结果表明,反应修饰剂ZnSO4可以与Ru-Zn催化剂中助剂ZnO反应生成(Zn(OH)23(ZnSO4)(H2O)盐。随反应修饰剂ZnSO4浓度增加,(Zn(OH)23(ZnSO4)(H2O)盐量的逐渐增加,Ru-Zn催化剂活性逐渐降低,环己烯选择性逐渐升高。因为(Zn(OH)23(ZnSO4)(H2O)盐中的Zn2+可以使Ru变为有利环己烯生成的缺电子的Ruδ+物种,而且还可以占据不适宜环己烯生成的强Ru活性位。但当反应修饰剂ZnSO4浓度高于0.41 mol·L-1后,继续增加ZnSO4浓度,由于Zn2+水解浆液酸性太强,可以溶解部分(Zn(OH)23(ZnSO4)(H2O)盐,Ru-Zn催化剂活性升高,环己烯选择性降低。但环己烯选择性却略微降低,这是由于ZnSO4溶液中大量的Zn2+可以与生成的环己烯形成配合物,稳定生成的环己烯,抑制生成的环己烯再吸附到催化剂表面并加氢生成环己烷。在ZnSO4最佳浓度0.61 mol·L-1下对Ru-Zn催化剂预处理15 h,Ru-Zn催化剂中助剂ZnO可以与ZnSO4完全反应生成(Zn(OH)23(ZnSO4)(H2O)盐,在该催化剂上25 min苯转化68.2%时环己烯选择性和收率分别为80.2%和54.7%。而且该催化剂具有良好的稳定性和重复使用性能。  相似文献   
2.
以单分散SiO2为模板,通过简单的一步煅烧法制备具有分级孔结构的g-C3N4。与体相g-C3N4相比,分级孔结构的g-C3N4不仅可见光吸收性能和比表面积得到提高,而且更有利于光生电子-空穴的分离。此外,具有分级孔结构的g-C3N4具有明显增强的可见光驱动的光催化产氢活性,当SiO2和二氰二胺质量比为1∶1时,制备所得g-C3N4(C3N4-2)产氢速率几乎是体相g-C3N4的18倍。  相似文献   
3.
用沉淀法制备了单金属纳米Ru(0)催化剂,考察了ZnSO4和La2O3作共修饰剂对该催化剂催化苯选择加氢制环己烯性能的影响,并用X射线衍射(XRD)、X射线荧光(XRF)光谱、X射线光电子能谱(XPS)、俄歇电子能谱(AES)、透射电镜(TEM)和N2物理吸附等手段对加氢前后催化剂进行了表征. 结果表明,在ZnSO4存在下,随着添加碱性La2O3量的增加,ZnSO4水解生成的(Zn(OH)23(ZnSO4)(H2O)x(x=1,3)盐量增加,催化剂活性单调降低,环己烯选择性单调升高. 当La2O3/Ru 物质的量比为0.075 时,Ru催化剂上苯转化率为77.6%,环己烯选择性和收率分别为75.2%和58.4%. 且该催化体系具有良好的重复使用性能. 传质计算结果表明,苯、环己烯和氢气的液-固扩散限制和孔内扩散限制都可忽略. 因此,高环己烯选择性和收率的获得不能简单归结为物理效应,而与催化剂的结构和催化体系密切相关. 根据实验结果,我们推测在化学吸附有(Zn(OH)23(ZnSO4)(H2O)x(x=1,3)盐的Ru(0)催化剂有两种活化苯的活性位:Ru0和Zn2+. 因为Zn2+将部分电子转移给了Ru,Zn2+活化苯的能力比Ru0弱. 同时由于Ru和Zn2+的原子半径接近,Zn2+可以覆盖一部分Ru0活性位,导致解离H2的Ru0活性位减少. 这导致了Zn2+上活化的苯只能加氢生成环己烯和Ru(0)催化剂活性的降低. 本文利用双活性位模型来解释Ru基催化剂上的苯加氢反应,并用Hückel分子轨道理论说明了该模型的合理性.  相似文献   
4.
首先以尿素和葡萄糖为前驱体,通过热缩合方法制备了C/g-C3N4,然后利用溶剂热法合成C/g-C3N4/MoS2三元复合材料。通过不同的手段对其进行了表征,结果表明,与C/g-C3N4相比,该三元复合材料不仅具有更强的光吸收性能和更大的表面积,而且更有利于电子的转移。同时对其可见光催化降解甲基橙性能进行研究,结果发现,C/g-C3N4/MoS2-2.0%复合材料(含有质量分数为2.0%的MoS2)表现出最高的反应速率常数(0.0086 min-1),分别为g-C3N4/MoS2-2.0%(0.0015 min-1)和C/g-C3N4(0.0036min-1)的5.7倍和2.3倍。  相似文献   
5.
共沉淀法制备了Ru-Zn催化剂,在ZrO_2作分散剂下考察了助剂前体ZnSO_4浓度对苯选择加氢制环己烯Ru-Zn催化剂性能的影响.并用X-射线衍射(XRD)、X-射线荧光光谱(XRF)、N_2-物理吸附、透射电镜(TEM)和X-射线光电子能谱(XPS)等手段对催化剂进行了表征.结果表明,当ZnSO_4前体浓度低于0.10 mol/L时,Ru-Zn催化剂中Zn以ZnO形式存在,在加氢过程中ZnO可以与反应修饰剂ZnSO_4反应生成(Zn( OH)_2)_3(ZnSO_4)(H_2O)_3盐.继续增加ZnSO_4前体浓度,催化剂中Zn以ZnO和NaZn_4(SO_4)(Cl)(OH)_6·6H_2O盐存在,在加氢过程中ZnO和NaZn_4(SO_4)(Cl)(OH)_6·6H_2O盐可以与反应修饰剂ZnSO_4反应生成(Zn( OH)_2)_3(ZnSO_4)(H_2O)_5.(Zn( OH)_2)_3(ZnSO_4)(H_2O)_x(x=3或5)盐的Zn~(2+)可以转移金属Ru的部分电子.因此,随ZnSO_4前体浓度的增加,(Zn( OH)_2)_3(ZnSO_4)(H_2O)_x的量逐渐增加,金属Ru失电子越多,催化剂活性越低,环己烯选择性越高.0.08 mol/L ZnSO_4前体制备Ru-Zn催化剂给出了59.1%的环己烯收率,而且该催化剂具有良好的重复使用性能和稳定性.  相似文献   
6.
首先以尿素和柠檬酸作为前驱体,通过热处理工艺合成N掺杂的g-C3N4(N-g-C3N4),然后利用化学还原的方法将Au沉积到N-g-C3N4表面,形成Au修饰的N掺杂的g-C3N4复合光催化材料(Au/N-g-C3N4)。通过XRD、XPS、TEM、UV-Vis和光电流测试对其进行了表征,与同等条件下制备的N-g-C3N4和g-C3N4相比,Au/N-g-C3N4具有更强的光吸收性能和更大的光电流。同时对材料的可见光产氢性能进行了研究,结果发现:当Au含量为1%时,复合材料呈现最佳的光催化产氢性能,其产氢速率为974μmol·g-1·h -1,为N-g-C3N4  相似文献   
7.
以三聚氰胺和尿素为原料,通过水热结合热处理工艺得到多孔g-C3 N4(PCN),然后以硼氢化钠为还原剂,通过原位还原法制备了Ag/PCN复合材料.利用XRD、FTIR、UV-Vis DRS、TEM和电化学等测试对复合材料进行一系列表征.与相同条件下制备的g-C3 N4和多孔g-C3 N4相比,Ag/PCN具有更好的光吸...  相似文献   
8.
共沉淀法制备了Ru-Zn催化剂,考察了反应修饰剂ZnSO_4和预处理对苯选择加氢制环己烯Ru-Zn催化剂性能的影响。结果表明,反应修饰剂ZnSO_4可以与Ru-Zn催化剂中助剂Zn O反应生成(Zn(OH)2)3(ZnSO_4)(H_2O)盐。随反应修饰剂ZnSO_4浓度增加,(Zn(OH)2)3(ZnSO_4)(H_2O)盐量逐渐增加,Ru-Zn催化剂活性逐渐降低,环己烯选择性逐渐升高。因为(Zn(OH)2)3(ZnSO_4)(H_2O)盐中的Zn2+可以使Ru变为有利环己烯生成的缺电子的Ruδ+物种,而且还可以占据不适宜环己烯生成的强Ru活性位。但当反应修饰剂ZnSO_4浓度高于0.41 mol·L-1后,继续增加ZnSO_4浓度,由于Zn2+水解浆液酸性太强,可以溶解部分(Zn(OH)2)3(ZnSO_4)(H_2O)盐,RuZn催化剂活性升高,环己烯选择性降低。环己烯选择性略微降低,是由于ZnSO_4溶液中大量的Zn2+可以与生成的环己烯形成配合物,稳定生成的环己烯,抑制环己烯再吸附到催化剂表面并加氢生成环己烷。在ZnSO_4最佳浓度0.61 mol·L-1下对Ru-Zn催化剂预处理15 h,Ru-Zn催化剂中助剂Zn O可以与ZnSO_4完全反应生成(Zn(OH)2)3(ZnSO_4)(H_2O)盐,在该催化剂上25 min苯转化68.2%时环己烯选择性和收率分别为80.2%和54.7%。而且该催化剂具有良好的稳定性和重复使用性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号