首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
化学   4篇
物理学   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Suppression of noises is studied for the open-loop-closed-loop (OPCL) coupling systems between the driver and response systems. In OPCL coupling systems, the error signal of noise is found to be suppressed and shows bounds. The error signal can be decreased exponentially by enlarging the absolute value of the eigenvalues' real part of the Hurwitz matrix. A method is provided to reduce the error signal sufficiently and achieve complete synchronization (US) effectively for the OPCL coupling systems under noises. Based on this method, three numerical examples are reported in this paper,  相似文献   
2.
脂肪酶(EC 3.1.1.3)全称为三酰基甘油水解酶,是一类能够将长链脂肪酸甘油酯水解成脂肪酸和二甘酯、单甘酯或甘油的酯键水解酶.它除了能够水解脂肪外,还具有催化酯化反应、酯交换反应、酸解反应、醇解反应以及氨解等反应的性质.在脂肪酶催化的反应中,通常用有机溶剂代替水.有机溶剂可以转移合成反应的平衡方向,通过溶剂工程修饰酶的选择性能够提高底物的溶解度、有机相产物的回收率、酶的热稳定性.但有机溶剂对酶活性和稳定性有不同程度的影响.因此,寻找在有机溶剂中表现出高活性和稳定性的脂肪酶是一个亟待解决的重要课题.由于微生物种类多、作用底物专一性强,且微生物来源的脂肪酶一般分泌到胞外,因此微生物脂肪酶是工业用脂肪酶的重要来源.目前,微生物脂肪酶的研究主要集中于根霉属(Rhizopus)、曲霉属(Aspergillus)、青霉属(Penicillium)、毛霉属(Mucor)、地霉属(Geotrichum)、假丝酵母属(Candida)、假单胞菌属(Pseudomonas)、伯克霍尔德菌属(Burkholderia)等具有工业应用价值的菌株.很少有类芽孢杆菌属所产脂肪酶进行相关酶学性质的研究.我们以Paenibacillus pasadenensis CS0611为出发菌株,在全基因序列草图中得到了一个新型脂肪酶基因lp2252.以Paenibacillus pasadenensis CS0611基因组为模板,设计特异性引物对目标序列进行扩增,并成功将其插入到表达载体p ET-28a中得到含有目的基因的重组质粒.在E.coli BL21(DE3)中,脂肪酶lp2252经0.1mmol/L的IPTG诱导后在20°C实现了高水平表达.重组脂肪酶的活性约为野生型的1631倍.用镍离子亲和层析柱快速、高效地纯化了两端带有组氨酸标签的重组脂肪酶,回收率为63.5%,纯化因子为10.78.纯化后的脂肪酶最适温度为50°C,在20-40°C范围内具有良好的稳定性.最适pH值为7,属于中性脂肪酶,同时在pH 3.0-8.0间具有较高稳定性.在金属离子如钙、镁离子和一些非离子表面活性剂的作用下,其活性有所提高.此外,纯化后的脂肪酶可被一系列水溶性有机溶剂激活,例如一些短链醇.而对某些水不溶性有机溶剂,其也具有高度的耐受性.综上所述,本文所涉新型脂肪酶在非水相催化领域具有广泛的应用和前景.  相似文献   
3.
纳米载体固定化酶的最新研究进展   总被引:1,自引:0,他引:1  
催化剂是化学工业的重要基础,其中酶是重要的高效天然催化剂。近年来,酶被越来越多地应用于工业领域,如精细化工、食品工业、制药工业、纺织业和制浆造纸。然而,由于游离酶存在价格昂贵及操作稳定性(特别是回收与重复使用性能)低等缺点,其在工业上的进一步应用受到一定限制。对酶进行固定化是解决上述问题的有效途径。一个理想的酶固定化技术需要载体具有良好的生物相容性和高比表面积,能够负载适量的酶并且具有很好的重复使用性能,固定化酶的过程简单温和,所得到的固定化酶制剂具有良好的催化性能、稳定性以及工业应用价值。尽管固定化酶技术经过了多年的发展,但仍需进一步研究。近几年,人们研究了基于纤维素纳米晶类、聚多巴胺类纳米载体以及生物相容性合成有机物纳米胶等新型载体对酶的固定化,取得了较好的成果。本文综述了这些新型纳米载体的制备以及酶的固定化过程,阐述了纳米载体固定化酶的结构和催化性能,并展望了发展前景。纤维素是全球产量最高、来源最广的生物聚合物。纤维素经过一定的酸(常用硫酸和盐酸)水解处理后,剩下的是具有高结晶度的纤维素纳米晶。它具有高比表面积、高机械强度和高长径比等优异性能。因此,研究者利用纤维素纳米晶作为载体进行酶固定化,获得了高负载量、高催化性能的固定化酶制剂。基于仿生矿化法制备的聚多巴胺类材料近年来获得研究者越来越多的关注。多巴胺具有良好的自聚合能力,可以对无机、有机等各种材料进行表面修饰。同时,聚多巴胺中含有的活性官能团可以与酶发生交联,从而达到固定化酶的效果。基于合成性聚合物纳米胶载体的固定化酶技术同样是一个新兴的、有意义的研究领域。相关的固定化过程可分为两大类:(1)在酶分子表面通过原位聚合生成纳米胶(growing-from过程);(2)将酶与预先合成的纳米胶进行交联(grafting-to过程)。其中, growing-from过程是先将酶分子丙烯酰化,再进行原位聚合。而原位聚合又可分为自由基聚合、原子转移自由基聚合(ATRP)和可逆加成-断裂链转移聚合(RAFT)。其中, ATRP和 RAFT主要用于制备环境响应型的酶-聚合物纳米凝胶。  相似文献   
4.
合成了稀土(钬, Ho)-氨基酸(甘氨酸, C2H5O2N)二元配合物Ho(NO3)3(C2H5O2N)4·H2O, 并且通过化学分析、元素分析和红外(IR)光谱对配合物进行了表征. 用高精度全自动绝热量热仪, 测定了该配合物在80-390 K温度区间的定压摩尔热容(Cp,m). 利用实验测定的热容数据, 采用最小二乘法, 将热容曲线上热容峰以外的两段平滑区的摩尔热容对折合温度进行拟合, 建立了热容随折合温度变化的多项式方程. 根据热容与焓、熵的热力学关系,计算出了配合物在80-390 K温度区间内,每隔5 K,相对于298.15 K的摩尔热力学函数(HT,m-H298.15,m)和(ST,m-S298.15,m). 通过热容曲线分析, 计算出了350 K附近转变过程的焓变(ΔtrsHm)和熵变(ΔtrsSm). 用差示扫描量热法(DSC)测定了配合物的热稳定性.  相似文献   
5.
来源于类芽孢杆菌属碱性甲壳素酶的分离纯化及其性质   总被引:1,自引:0,他引:1  
甲壳素,又名几丁质(chitin),是自然界中含量仅次于纤维素的第二大天然多糖,有第六生命要素之美称.其主要存在于甲壳类动物的外壳、真菌细胞的细胞壁以及一些昆虫的外壳中,每年自然界中约有100多亿吨甲壳素生成.甲壳素是由2-乙酰氨基-2-脱氧-D-吡喃葡萄糖和2-氨基-2-脱氧-D-吡喃葡萄糖通过β-1,4糖苷键连接而成的二元线性聚合物,分子链中分布许多羟基、氨基及乙酰氨基,形成大量分子间及分子内氢键,致使其结晶度较高,化学性质十分稳定,直接利用较为困难.甲壳素不溶于稀酸、稀碱以及一般有机溶剂,工业上常用强酸强碱法处理甲壳素,以制备壳寡糖类产品,但该方法具有产品结构不单一,环境污染较为严重等缺点.甲壳素酶可特异性水解甲壳素链中β-1,4糖苷键,得到甲壳寡糖和N-乙酰氨基葡萄糖.酶解法降解甲壳素工艺简单、反应条件温和、环境友好,有很好的应用前景.我们以Paenibacillus pasadenensis CS0611为出发菌株,以蟹壳粉末为培养基唯一碳源及氮源,在适宜条件下培养48 h.发酵液经离心、硫酸铵(80%饱和度)盐析、透析除盐后得到粗酶液.再利用HiTrap DEAE FF离子交换层析和HiLoad 26/600Superdex 200 pg凝胶过滤层析对该粗酶液进行分离纯化,以得到电泳纯甲壳素酶.所制备甲壳素酶比活力为10.28 U/mg,最终纯化倍数为5.3,酶活得率为15.7%.SDS-PAGE结果表明,该甲壳素酶相对分子质量约为69 kDa.后经MALDI-TOF-MS鉴定,该酶部分肽段和来源于另一株Paenibacillus pasadenenss的甲壳素酶(accession No:gi655151624)具有较高的同源性,进一步证实所纯化蛋白为甲壳素酶.对上述纯化的甲壳素酶的酶学性质进行研究,结果发现:其最适反应温度为50℃,在20-35℃内有较好的稳定性,50℃及以上热稳定性较差;最适pH为5.0,在pH4.0-11.0间具有较高稳定性,表明该酶具有很好的耐碱性;金属离子对该酶催化活性没有明显的激活作用,表明该甲壳素酶是非金属酶.同时,对该酶的底物特异性进行研究,发现该酶对胶体甲壳素和甲壳素水解能力较强,对淀粉和纤维素无水解能力,对不同脱乙酰度的壳聚糖的水解程度随脱乙酰度不同而变化,表明该酶只能特异性识别并降解GlcNAc-GlcNAc之间的糖苷键;以胶体甲壳素为底物时,米氏常数Km为4.41 mg/mL,最大反应初速度为1.08 mg/min.利用薄板层析和高效液相色谱对酶解产物进行分析,结果表明该甲壳素酶对胶体甲壳素的降解产物主要是(GlcNAc)2.综上所述,本研究所涉甲壳素酶在甲壳二糖的酶法制备方面具有较好的应用前景.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号