首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   4篇
化学   5篇
物理学   1篇
  2023年   1篇
  2022年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
磷酸硅铝类分子筛由于其温和的酸性以及良好的热稳定性和水热稳定性在催化领域得到了广泛的应用.例如SAPO-34分子筛具有优异的催化甲醇制烯烃反应的催化活性,经过铜离子交换后的Cu-SAPO-34分子筛在选择性催化还原NOx过程中体现了良好的活性及稳定性.在磷酸硅铝分子筛的合成过程中往往需要使用有机胺或铵盐作为有机结构导向剂.导向剂起到了溶解原料、导向结构、匹配电荷、填充骨架空间等复杂的作用,因此开发新型的有机结构导向剂是调节磷酸硅铝分子筛晶相、形貌以及酸性位点分布的最重要的手段.DNL-6分子筛是由本课题组首次报道的具有RHO拓扑结构的磷酸硅铝分子筛,由于其丰富的酸位点以及适宜的孔口尺寸在CO_2/CH4和CO_2/N_2吸附分离过程中体现出良好的应用前景.此外由于DNL-6分子筛具有非常强的酸性(接近H-ZSM-5),在DNL-6分子筛上首次发现MTO反应过程中的活性中间体七甲基苯基碳正离子.截止目前为止二乙胺是唯一被报道的成功导向DNL-6分子筛的有机胺模板剂,在水热合成过程中必须使用阳离子表面活性剂以防止DNL-6分子筛的溶解与转晶,同时产品的组成调节困难。本论文主要报道了一种新型的有机胺模板剂N,N’-二甲基乙二胺在水热条件下成功导向具有很高的结晶度与较高的硅含量范围(20%–35%)的DNL-6分子筛,对DNL-6产物进行X射线衍射、X射线荧光分析、X射线光电子能谱、扫描电镜以及氮气物理吸附等一系列系统表征.热重分析表明DNL-6分子筛α笼中较大的模板剂容纳量(单位α笼中容纳4.4个模板剂分子)是成功得到具有超高硅DNL-6分子筛(硅摩尔含量达36.4%)的原因.结合固体魔角旋转核磁(13C,29Si,27Al,31P以及多量子27Al)对分子筛骨架的原子配位环境的分析以及XPS表征表明超高硅DNL-6分子筛具有复杂的硅环境分布,晶粒外表面以酸密度很低的大面积硅岛为主,沿晶粒半径方向向晶体内部硅含量逐渐下降同时硅岛面积逐渐减小,晶粒中心的硅环境主要以Si(4Al)为主.由于超高硅DNL-6分子筛较强的酸强度、合适的酸位点分布以及狭窄的孔道尺寸在甲醇氨化反应中得到了超过88%的甲醇转化率以及85%的甲胺+二甲胺选择性.  相似文献   
2.
本文研究了H-SAPO-34催化甲醇和丁醇转化反应及其产物分布的差异,结合气相色谱-质谱(GC-MS)联用、13C交叉极化魔角旋转核磁共振(13C CP MAS NMR)技术捕获了反应过程中生成的重要反应中间物种.甲醇转化过程以乙烯、丙烯和丁烯为主要产物;而丁醇转化过程中主要产物是丁醇脱水生成的丁烯,反应初期以丙烯和丁烯作为主要产物.两种醇类转化均以低碳烯烃作为主要产物,且存留物种和13C CP MAS NMR分析均观察到芳烃物种,说明H-SAPO-34催化甲醇和丁醇转化存留在催化剂上的有机物种相近.虽然起始于不同的醇类反应,但H-SAPO-34上限域空间的酸催化环境都能引导甲醇和丁醇制取低碳烯烃的反应过程.  相似文献   
3.
磷酸硅铝类分子筛由于其温和的酸性以及良好的热稳定性和水热稳定性在催化领域得到了广泛的应用.例如SAPO-34分子筛具有优异的催化甲醇制烯烃反应的催化活性,经过铜离子交换后的Cu-SAPO-34分子筛在选择性催化还原NOx过程中体现了良好的活性及稳定性.在磷酸硅铝分子筛的合成过程中往往需要使用有机胺或铵盐作为有机结构导向剂.导向剂起到了溶解原料、导向结构、匹配电荷、填充骨架空间等复杂的作用,因此开发新型的有机结构导向剂是调节磷酸硅铝分子筛晶相、形貌以及酸性位点分布的最重要的手段.DNL-6分子筛是由本课题组首次报道的具有RHO拓扑结构的磷酸硅铝分子筛,由于其丰富的酸位点以及适宜的孔口尺寸在CO2/CH4和CO2/N2吸附分离过程中体现出良好的应用前景.此外由于DNL-6分子筛具有非常强的酸性(接近H-ZSM-5),在DNL-6分子筛上首次发现MTO反应过程中的活性中间体七甲基苯基碳正离子.截止目前为止二乙胺是唯一被报道的成功导向DNL-6分子筛的有机胺模板剂,在水热合成过程中必须使用阳离子表面活性剂以防止DNL-6分子筛的溶解与转晶,同时产品的组成调节困难.本论文主要报道了一种新型的有机胺模板剂N,N'-二甲基乙二胺在水热条件下成功导向具有很高的结晶度与较高的硅含量范围(20%–35%)的DNL-6分子筛,对DNL-6产物进行X射线衍射、X射线荧光分析、X射线光电子能谱、扫描电镜以及氮气物理吸附等一系列系统表征.热重分析表明DNL-6分子筛α笼中较大的模板剂容纳量(单位α笼中容纳4.4个模板剂分子)是成功得到具有超高硅DNL-6分子筛(硅摩尔含量达36.4%)的原因.结合固体魔角旋转核磁(13C,29Si,27Al,31P以及多量子27Al)对分子筛骨架的原子配位环境的分析以及XPS表征表明超高硅DNL-6分子筛具有复杂的硅环境分布,晶粒外表面以酸密度很低的大面积硅岛为主,沿晶粒半径方向向晶体内部硅含量逐渐下降同时硅岛面积逐渐减小,晶粒中心的硅环境主要以Si(4Al)为主.由于超高硅DNL-6分子筛较强的酸强度、合适的酸位点分布以及狭窄的孔道尺寸在甲醇氨化反应中得到了超过88%的甲醇转化率以及85%的甲胺+二甲胺选择性.  相似文献   
4.
低碳烯烃(乙烯、丙烯和丁烯)是重要的有机化工原料,是现代石油化工的基础,主要通过石脑油裂解和烷烃脱氢制备。现阶段我国原油对外依存度已超过60%,“多煤、缺油、少气”的能源现状决定了以煤或天然气为原料经甲醇制取石化产品成为一种重要的替代途径。甲醇制取低碳烯烃(MTO)过程成为连接煤化工和石油化工的桥梁。 ZSM-5分子筛以其高效的甲醇转化能力、优异的低碳烯烃选择性和出色的抗积碳性能成为非常理想的 MTO反应催化剂。研究发现 ZSM-5分子筛催化 MTO反应过程中,乙烯的生成规律与其它 C3–C7链状烯烃不一致,认为乙烯主要来源于芳烃缩环/扩环循环,而 C3–C7链状烯烃主要来源于烯烃甲基化/裂解循环,两种循环同时存在。本文于300°C在 ZSM-5分子筛上进行 MTO反应,通过考察不同空速(WHSV)条件下的 MTO反应性能和分析催化剂内留存物种的生成和所起的作用,研究甲醇转化机理。气相流出物种和催化剂内留存物种的分析表明, ZSM-5分子筛催化 MTO反应时遵循双循环机理——以多甲基苯和多甲基环戊二烯为主要活性物种的芳烃循环机理和以链状烯烃为主要活性物种的烯烃循环机理。在双循环机理中,芳烃循环和烯烃循环并不是简单叠加,而是相互影响,芳烃循环产生的烯烃可以作为烯烃循环的活性物种促进烯烃循环,烯烃循环中较高级的烯烃经过环化、氢转移作用,能够转化成富氢的烷烃和贫氢的芳烃、环戊二烯物种,贫氢的芳烃和环戊二烯物种又可以作为芳烃循环的主要物种促进芳烃循环的进行。氢转移反应是联系烯烃循环和芳烃循环的重要过程,与反应过程中原料甲醇与催化剂床层的接触时间有关,12C/13C甲醇切换实验揭示了双循环机理与氢转移反应的相关性,通过调变原料甲醇与催化剂床层的接触时间,可以调变氢转移反应的剧烈程度,进而对催化剂上芳烃循环和烯烃循环的甲醇转化能力产生不同的影响。当空速较低时,进料甲醇与催化剂床层的接触时间较长,有利于产物烯烃的氢转移反应,加速了分子筛催化剂上芳烃物种和环戊二烯物种的生成和累积,促进了芳烃循环,主要由芳烃循环生成的乙烯和多甲基苯的气相选择性提高;反之,当空速较高时,进料甲醇与催化剂床层的接触时间减少,产物烯烃的氢转移反应受到抑制,氢转移反应的产物——芳烃和环戊二烯物种的生成数量和累积速率降低,芳烃循环活性不高,使得烯烃循环成为甲醇转化的主要途径, C3–C7烯烃显示出更高的活性,在气相流出物种中的选择性也更高。总之,原料甲醇与催化剂床层的接触时间能够显著影响催化剂内留存物种的生成和累积,进而改变两种循环的比重。这些发现对于实现 ZSM-5分子筛催化 MTO反应过程中的产物烯烃和芳烃的选择性调控具有重要意义。  相似文献   
5.
从煤、生物质或天然气出发经甲醇制烯烃正在成为最重要的非石油路线低碳烯烃和液态燃料的生产途径。基于SAPO-34和HZSM-5催化剂,甲醇制低碳烯烃(MTO),甲醇制丙烯(MTP)和甲醇制汽油(MTG)已经实现了工业化。与此同时,甲醇制烯烃反应机理也一直是学术界和工业界研究的焦点,然而由于甲醇转化机理十分复杂,且往往受多种因素的影响,使得机理研究工作至今未给出明确详尽的结论。据文献报道,在具有较大笼或交叉孔道结构的SAPO-34, SSZ-13和Hβ催化剂上,甲醇转化主要是通过烃池机理进行。烃池物种包括多甲苯及其对应的质子化产物。随着HZSM-5上甲醇转化双循环机理的提出,近期人们开始关注一维孔道分子筛上的甲醇转化反应,试图通过抑制芳烃循环使得甲醇转化主要通过烯烃甲基化裂解机理进行,发现在具有一维十元环孔道结构的HZSM-22分子筛上甲醇转化能够达到这一效果,产物主要以C3+烯烃为主,乙烯的生成较少。该催化体系的发现对于甲醇制丙烯过程的开发具有重要的意义,然而除了分子筛的拓扑结构,催化剂的酸强度对甲醇转化也具有重要的影响,值得深入研究。为此,本文采用同位素切换/共进料实验,色质谱(GC-MS),热分析(TGA)以及原位红外实验(in situ FTIR)等技术系统研究两种一维十元环结构分子筛HZSM-22和SAPO-11酸强度对于甲醇转化和催化剂失活机理的影响,为开发新型催化剂和优化反应条件以调节产物选择性提供理论指导。
  12C/13C-甲醇切换实验表明, HZSM-22和SAPO-11催化的甲醇转化机理主要是烯烃循环,然而由于酸强度的差异导致两种分子筛上甲基化反应和裂解反应对烯烃最终产物分布贡献不同。对于HZSM-22分子筛,催化活性较高,当反应温度低于400 oC时,产物以C5+高碳烃为主,随着反应温度的升高,产物以C2–C4低碳烃为主,且乙烯的增长速率高于丙烯;对于SAPO-11分子筛,催化活性较低,无论反应温度高或低,甲醇转化产物均以C5+高碳烃为主。以上结果表明,催化剂的活性与酸强度相关,且随着反应温度的升高,在酸性较强的HZSM-22分子筛上高碳烃的裂解活性要远高于酸性较弱的SAPO-11分子筛。该推论得到13C-甲醇和12C-1-丁烯共进料实验数据的支持。失活催化剂的GC-MS和TG结果显示,催化剂的失活与酸强度和反应温度密切相关:对于HZSM-22分子筛,较低温度下(<450 oC)催化剂的失活源于稠环化合物的生成和积累,高温下(>450 oC)的失活是源于分子筛表面石墨碳的沉积;对于SAPO-11分子筛,低温下(<400 oC)的失活源于稠环芳烃的生成和积累,高温下(>400 oC)的失活是源于分子筛表面石墨碳的沉积。此外,由于酸强度的差异,与SAPO-11相比,低温下积碳物种更倾向于在HZSM-22分子筛孔口快速形成。这也是HZSM-22分子筛在低温下快速失活的原因。为了进一步证明该结论,本文采用原位红外装置对HZSM-22催化甲醇转化过程中的Br?nsted酸和芳烃物种进行了连续监测。结果显示,在最初的15 min内归属为Br?nsted酸的峰(3585 cm–1)有明显的下降,但随着反应时间的延长, Br?nsted酸的量不再发生变化;与此同时,归属为芳烃物种的峰(3136 cm–1)增加到一定程度后随着反应时间的延长也几乎不再增加。这进一步说明了低温下HZSM-22分子筛的失活是由非活性芳烃积碳物种堵塞孔口造成的。  相似文献   
6.
CO2作为碳资源的规模化高附加值利用是实现其减排的重要方向.然而,由于其热力学稳定,以CO2为原料高效转化为大宗化学品一直是一个巨大的挑战.工业上普遍以富氢的石脑油为原料生产相对缺氢的烯烃和芳烃产品,但其存在原料和目标产品之间的碳氢不平衡问题.理论上,采用CO2与富氢的烷烃耦合,可以改善二者的平衡关系,提高目标产物选择性,同时实现CO2资源化利用.已有研究采用CO2与烷烃反应,将CO2转化为CO并减少氢气的生成,但CO2的碳原子没有进入烃类产物中.本文系统研究了酸性分子筛催化的CO2与烷烃耦合反应,大幅提高了芳烃选择性,证实部分CO2中的碳原子直接进入了芳烃产品中.本文以H-ZSM-5为催化剂,对比研究了正丁烷、正戊烷和正己烷在He和CO2气氛中的转化反应,并详细研究了反应温度、CO2/n-butane比例、接触时间以及分子筛酸量等条件对耦合反应的...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号