首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  国内免费   7篇
化学   7篇
物理学   4篇
  2022年   2篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2001年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
采用简单的化学偏聚法合成出Ag3PO4纳米颗粒、磷酸钴(Co3(PO4)2,CoP)纳米片以及它们两者的纳米复合结构(CoP/Ag3PO4),同时还比较了它们的可见光催化活性.采用场发射扫描电镜(FESEM)、X射线衍射(XRD)、紫外-可见(UV-Vis)吸收光谱以及光致发光谱等手段对其形貌、结构、光学以及可见光催化性能等进行表征.结果表明,CoP/Ag3PO4复合纳米结构的可见光降解甲基橙(MO)的速率和循环稳定性均明显优于其它两种物质.这表明CoP应该起着共催化剂的作用,它能够抑制光生电子与空穴之间的复合,并且提供大量高活性的光生空穴.此外,我们还发现CoP/Ag3PO4降解另一种阳离子型染料——罗丹明B(RhB)的能力则远不如纯Ag3PO4,这可能是与光催化剂的表面性质发生改变有关,造成更低的RhB吸附能力.本文提供了一种廉价制备高效可见光催化剂的新方法.  相似文献   
2.
为了利用低能量分辨率探测器γ能谱分析获取未知放射性核素的特征信息,提高γ能谱中重峰及弱峰分析的准确性和有效性,本文开展了基于Boosted-Gold算法的Na I(Tl)探测器γ能谱分析研究.采用MCNPX建立Na I(Tl)探测器模拟模型,获得了维度201×200的探测器响应矩阵.基于Boosted-Gold算法开发了γ能谱反演程序.实验测量了γ源22Na,133Ba和152Eu的探测器响应能谱,并以不同γ射线能量、不同能差(?E)、不同相对强度为条件构建了3组低分辨率模拟γ能谱,结合响应矩阵及反演程序对实测γ能谱和模拟γ能谱进行反演.以IAEA数据库核素标准特征信息对反演结果进行分析.结果表明:Boosted-Gold算法对实测γ能谱特征能量反演误差最大为2.17%(133Ba源0.276Me V),反演强度与标准强度最大差为0.197(152Eu源1.408Me V).对模拟γ能谱核素特征能量均可准确分析,反演强度与标准强度差值保持在0.01以内;当增强系数p≤14时,Boosted-Gold算法有利于γ放射性核素的定量分析,对于相对强...  相似文献   
3.
以提高某型飞机机载机电系统UMS的外场故障定位和隔离能力为背景,实现资源整合,对UMS系统通用自动测试平台GPATE的硬件结构与软件技术进行了研究,介绍了GPATE平台的硬件结构的组成和软件架构的设计,在GPATE平台上采用标准化、模块化设计,实现了硬件的通用性和软件的可移植性。通过实验室静态仿真和外场动态验证表明,GPATE的设计合理、各项指标均能满足实现对UMS系统功能测试的要求,有效地提高了产品的故障检测率。  相似文献   
4.
聚集诱导发光机理研究   总被引:5,自引:0,他引:5  
与传统荧光生色团聚集后导致荧光猝灭相反,有一类化合物在单分子状态下荧光微弱甚至观察不到荧光,而在聚集状态下荧光显著增强,这就是聚集诱导发光(AIE)现象。AIE现象独特的优越性使得众多研究组开发出越来越多的新AIE体系,其机理也被广泛而深入地研究。本文总结了目前为止已经提出的AIE机理,包括分子内旋转受限、分子内共平面、抑制光物理过程或光化学反应、非紧密堆积、形成J-聚集体以及形成特殊激基缔合物等;着重评述了目前研究最为全面、适用范围最广的分子内旋转受限机理。同时介绍了一些基于这些机理设计的新AIE体系。  相似文献   
5.
水合烟酸钡的合成、结构表征和热化学性质   总被引:1,自引:0,他引:1  
选择烟酸和氢氧化钡作为反应物,利用室温固相合成方法,借助于球磨技术,合成了一种新的化合物-水合烟酸钡.利用化学分析、元素分析、FTIR和X射线粉末衍射等方法确定了它的组成和结构为Ba(Nic)2·3H2O(s).利用精密自动绝热热量计直接测定了此化合物在78-400 K温区的摩尔热容.在热容曲线上出现了一个明显的吸热峰,通过对热容曲线的解析,得到了相变过程的峰温、相变焓和相变熵分别为(327.097±1.082)K、(16.793±0.084)kJ·mol-1和(51.340±0.164)J·K-1·mol-1将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程,并且在此基础上计算出了它的舒平热容值和各种热力学函数值.另外,依据Hess定律,通过设计合理的热化学循环,选择体积为100mL、浓度为0.5mol·L-1的盐酸作为量热溶剂,利用等温环境溶解-反应热量计分别测量固相反应的反应物和产物在所选溶剂中的溶解焓,利用溶解焓确定固相反应的反应焓为△rH0m=-(84.12±0.38)kJ·mol-1.最后,利用固相反应的反应焓和其它反应物和产物已知的热力学数据计算出水合烟酸钡的标准摩尔生成焓为△rH0m[Ba(Nic)2·3H2O(s)]=-(2115.13±1.90)kJ·mol-1.  相似文献   
6.
提出一种基于深度优先搜索的全芯片光源掩模优化关键图形筛选方法。所提方法采用掩模频谱的投影边界以及增长因子表征掩模的衍射频谱特征。设计了基于深度优先搜索的关键图形筛选算法,实现了全芯片光源掩模优化关键图形筛选,获得了所有关键图形组。相比于现有同类方法,所提方法可以获得覆盖频率分组的所有关键图形组,进而选出更优关键图形组。采用荷兰ASML公司的商用计算光刻软件Tachyon Tflex对所提方法进行了仿真验证,仿真结果表明所提方法获得的工艺窗口优于Tachyon Tflex方法,与现有方法相比,所提方法筛选出的关键图形结果更优。  相似文献   
7.
采用不同的双取代聚乙炔与多壁碳纳米管复合,通过π-π相互作用和聚合物链缠绕实现了对碳纳米管的增溶.这种方法对碳纳米管的结构没有损害,而且包覆到碳纳米管表面的双取代聚乙炔也显示了自身的荧光发射特性.  相似文献   
8.
李清芳  胡舸  姚靖  张双  魏胜  封文江 《发光学报》2013,34(9):1135-1143
利用基于密度泛函理论框架下的平面波赝势法和广义梯度近似,计算分析了ZnTe结构本体、掺入杂质Cu(Zn0.875Cu0.125Te)及Zn空位(Zn0.875Te)体系的晶格常数及缺陷形成能,得到了不同体系的态密度、能带结构、集居数、介电函数、损失函数、吸收光谱、光电导率、复折射率及反射率。结果表明,掺杂Cu和Zn空位对ZnTe的晶胞参数、能带结构以及光学性质都产生了一定程度的影响。由于空位及杂质能级的引入,缺陷体系体积减小,晶胞参数也产生了一定的改变,同时缺陷体系禁带宽度减小并给受主能级价带顶提供n型电导性;此外,缺陷体系吸收光谱产生红移,电子在可见光区的跃迁明显增强并出现介电峰,改善了ZnTe的光学性质。  相似文献   
9.
选择烟酸和氢氧化钡作为反应物, 利用室温固相合成方法, 借助于球磨技术, 合成了一种新的化合物——水合烟酸钡. 利用化学分析、元素分析、FTIR和X射线粉末衍射等方法确定了它的组成和结构为Ba(Nic)2·3H2O(s). 利用精密自动绝热热量计直接测定了此化合物在78-400 K温区的摩尔热容. 在热容曲线上出现了一个明显的吸热峰, 通过对热容曲线的解析, 得到了相变过程的峰温、相变焓和相变熵分别为(327.097±1.082) K、(16.793±0.084) kJ·mol-1和(51.340±0.164) J·K-1·mol-1. 将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程, 并且在此基础上计算出了它的舒平热容值和各种热力学函数值. 另外, 依据Hess定律, 通过设计合理的热化学循环, 选择体积为100 mL、浓度为0.5 mol·L-1的盐酸作为量热溶剂, 利用等温环境溶解-反应热量计分别测量固相反应的反应物和产物在所选溶剂中的溶解焓, 利用溶解焓确定固相反应的反应焓为⊿rH0m=-(84.12±0.38) kJ·mol-1. 最后, 利用固相反应的反应焓和其它反应物和产物已知的热力学数据计算出水合烟酸钡的标准摩尔生成焓为⊿fH0m[Ba(Nic)2·3H2O(s)]=-(2115.13±1.90) kJ·mol-1.  相似文献   
10.
采用简单的化学偏聚法合成出Ag3PO4纳米颗粒、磷酸钴(Co3(PO4)2,CoP)纳米片以及它们两者的纳米复合结构(CoP/Ag3PO4),同时还比较了它们的可见光催化活性.采用场发射扫描电镜(FESEM)、X射线衍射(XRD)、紫外-可见(UV-Vis)吸收光谱以及光致发光谱等手段对其形貌、结构、光学以及可见光催化性能等进行表征.结果表明,CoP/Ag3PO4复合纳米结构的可见光降解甲基橙(MO)的速率和循环稳定性均明显优于其它两种物质.这表明CoP应该起着共催化剂的作用,它能够抑制光生电子与空穴之间的复合,并且提供大量高活性的光生空穴.此外,我们还发现CoP/Ag3PO4降解另一种阳离子型染料——罗丹明B(RhB)的能力则远不如纯Ag3PO4,这可能是与光催化剂的表面性质发生改变有关,造成更低的RhB吸附能力.本文提供了一种廉价制备高效可见光催化剂的新方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号