首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
  国内免费   7篇
化学   14篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
针对二硫化钼(MoS2)因易团聚导致去除六价铬[Cr(Ⅵ)]容量低的问题, 利用六方氮化硼(BN)良好的吸附性和化学稳定性, 以多巴胺作为BN改性剂, 通过煅烧法和水热法制得碳掺杂六方氮化硼(c-BN)负载MoS2纳米复合材料(c-BN@MoS2). 研究了室温条件下c-BN@MoS2对Cr(Ⅵ)的吸附还原和助催化降解有机污染物的性能. 实验结果表明, c-BN@MoS2在40 min内对50 mg/L的Cr(Ⅵ)吸附还原去除率高达95%以上, 且以将 Cr(Ⅵ)还原至Cr(Ⅲ)为主, 在pH值为2、 温度为25 ℃条件下去除Cr(Ⅵ)最大容量可达401 mg/g, 显著高于 MoS2(98 mg/g). 分析显示, c-BN不仅提高了MoS2的平均孔径, 还可促进MoS2生成金属特性的1T相, 有利于吸附Cr(Ⅵ)和加快氧化还原过程中的电子转移. 在Fe2+/PMS(过一硫酸氢盐)催化体系加入c-BN@MoS2, 该体系对磺胺甲恶唑的降解性能明显增强, 其反应速率常数提高3倍, 这主要归因于c-BN@MoS2明显加快了Fe3+到Fe2+的转变, 导致更多?OH产生, 达到增强降解污染物的目标.  相似文献   
2.
以多巴胺、钼酸铵、碳酸氢铵为原料,通过一步煅烧法合成一种 MoO2@氮掺杂碳复合物(MoO2@CN),并利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、拉曼光谱(Raman)等对其进行表征。以卡马西平(CBZ)为目标污染物,以过一硫酸氢钾(PMS)为氧化剂,在温度为25 ℃、pH为6.5的条件下,MoO2@CN/PMS在12 min内对CBZ的去除率达99.2%,与商用MoO2相比,其表观速率常数kobs(0.393 min-1)是商用MoO2(0.016 4 min-1)的24.0倍,这主要是由于制备的MoO2@CN比商用MoO2具有更好的电子传输能力以及更大的比表面积。MoO2@CN在 pH为 2.5~10.5时均能有效降解 CBZ,而且对大多数染料、酚类化合物、抗生素等多种污染物均具有良好的降解性能。此外,MoO2@CN/PMS在60 min内对CBZ的总有机碳(TOC)去除率高达74.0%。电子顺磁共振波谱(EPR)和自由基猝灭实验显示MoO2@CN/PMS体系中主要起作用是硫酸根自由基(SO4·-)和羟基自由基(·OH)。更有意思的是,在Fe2+/PMS体系加入MoO2@CN后,其催化降解CBZ的性能显著增强,kobs(1.25 min-1)是单独Fe2+/PMS体系(0.079 7 min-1)的15.7倍,这主要归因于MoO2@CN的引入加快了Fe3+到Fe2+的转变,导致更多·OH的生成。  相似文献   
3.
平面双核铜酞菁催化氧化硫醇   总被引:2,自引:0,他引:2       下载免费PDF全文
采用苯酐-尿素路线合成了八羧基铜酞菁(CuPc)和十二羧基双核铜酞菁(Cu2Pc2), 研究了两种铜酞菁对巯基乙醇的催化活性, 推测出了双核铜酞菁的催化机理, 并考察了pH值、催化剂浓度和温度对双核铜酞菁催化氧化巯基乙醇的影响. 实验发现, 单核铜酞菁对巯基乙醇无催化活性, 而双核铜酞菁对巯基乙醇有较高的催化活性; 双核铜酞菁的催化活性在pH=11时最大; 催化活性随催化剂浓度和温度升高而提高; 此催化反应为吸热反应.  相似文献   
4.
四羧基金属酞菁负载纤维素纤维的制备及其消臭性能研究   总被引:2,自引:0,他引:2  
合成了四羧基铁酞菁(Fe-CPc)和四羧基钴酞菁(Co-CPc),并对其进行了元素分析和红外光谱表征.在酸性条件下,将四羧基金属酞菁负载到改性纤维素纤维上,制备得到消臭纤维.实验结果表明,在室温条件下,四羧基铁酞菁消臭纤维(FePcF)、四羧基钴酞菁消臭纤维(CoPcF)和混合金属酞菁消臭纤维(CoFePcF)3种功能性纤维都能有效去除甲硫醇、硫化氢、氨气和三甲胺,甲硫醇和硫化氢按催化氧化机理除去,而氨气和三甲胺按酸碱中和机理除去;3种消臭纤维对甲硫醇和硫化氢的消臭效果为CoFePcF>CoPcF>FePcF.  相似文献   
5.
将氨基锌酞菁(ZnTAPc)与甲基丙烯酰氯反应制备出含有不饱和双键的取代锌酞菁衍生物(MeZnAPc),采用ATRP法将聚乙二醇单甲醚大分子引发剂(mPEG110-Br)与甲基丙烯酸(2-异丙胺基)乙酯(DPA)和MeZnAPc共聚,制得一种新型pH响应两亲嵌段锌酞菁聚合物光敏剂(PEG110-b-P(DPAn-co-MeZnAPcm)).用1HNMR,FTIR对MeZnAPc和聚合物光敏剂进行表征.UV-vis测试表明该聚合物光敏剂在pH6.0~6.5具有较好的pH响应性.以1,3-二苯基苯并呋喃(DPBF)为底物研究了该聚合物光敏剂的光催化氧化效率,结果表明其具有较高光活性.利用该聚合物光敏剂在不同pH的水溶液中对L-色氨酸进行光催化氧化实验,结果发现在pH5.5不存在胶束时,锌酞菁可以较好地分散在溶液中,并能维持较高光活性,而在pH7.4形成胶束时可以将锌酞菁很好地包裹在其内部,使其光活性大大降低.因此,这种pH响应两亲嵌段锌酞菁聚合物作为一种新型光敏剂,在光动力学治疗领域有较好的应用前景.  相似文献   
6.
通过直接酯化-缩聚工艺,在聚对苯二甲酸丙二酯(PTT)聚合的酯化过程中加入第三组分间苯二甲酸丙二酯-5-磺酸钠(SIPP),在缩聚过程中加入第四组分聚1,6-己二酸-1,4-丁二醇酯(PBA)或聚乙二醇(PEG)合成了一系列不同的阳离子染料可染PTT,采用氢核磁共振波谱(1H-NMR)、差示扫描量热仪(DSC)和热重分...  相似文献   
7.
将氨基钴酞菁(CoTAPc)以共价键的形式负载到碳纳米纤维(CNF)上制备碳纳米纤维负载钴酞菁催化剂(CoTAPc-CNF),利用原子吸收光谱、紫外-可见光吸收光谱、衰减全反射-红外光谱等方法对CoTAPc-CNF进行表征.选用具有氧杂蒽结构的罗丹明6G(Rh6G)为主要研究对象,研究CoTAPc-CNF对Rh6G的催化氧化性能,考察了温度、pH、NaCl、异丙醇等对CoTAPc-CNF催化性能的影响.结果表明,CoTAPc-CNF在常温中性条件下能有效催化氧化Rh6G;随着温度和pH的增加,CoTAPc-CNF催化氧化Rh6G速率逐渐提高;NaCl和异丙醇的加入,没有抑制催化氧化反应的进行,相反大大提高了Rh6G的降解速率,这与一般羟基自由基占主导的高级氧化体系完全不同;进一步采用电子顺磁共振波谱法证实CoTAPc-CNF/H2O2体系确实为非羟基自由基催化机理.另外,研究发现CoTAPc-CNF还能有效催化氧化其他共轭结构的染料,如偶氮染料酸性橙7(AO7)、三芳甲烷染料碱性绿1(BG1).因此,本文探索的CoTAPc-CNF/H2O2非羟基自由基催化反应体系在处理成分复杂的实际印染废水中具有较好的应用前景.  相似文献   
8.
采用2,4,6-三氯-1,3,5-三嗪对四氨基钴酞菁进行改性,并以共价键接枝到聚N-异丙基丙烯酰胺上制得一种新型温敏性高分子催化剂——钴酞菁接枝温敏聚合物,并采用UV-Vis、TG等对其进行表征.对钴酞菁接枝温敏聚合物、温敏聚合物和小分子金属酞菁进行溶解性测试,结果表明与四氨基钴酞菁相比,所合成的钴酞菁接枝温敏聚合物能溶解于水和大多数有机溶剂,且该聚合物水溶液具有良好的温敏性,其最低临界溶解温度(LCST)为34.5℃.采用浊度法考察了不同比例的混合溶剂(乙醇/水、DMF/水)对LCST的影响,结果表明随着有机溶剂含量的增加,LCST先下降后升高,而当有机溶剂增加到一定程度时温敏性消失.本文还考察了钴酞菁接枝温敏聚合物对2-巯基乙醇的催化活性,结果表明随着温度升高,催化活性也不断提高,而当温度超过LCST时催化活性急剧下降,聚合物从溶液中析出.基于这些特性,该温敏聚合物负载酞菁作为一种新型的催化剂可实现均相催化、异相分离.  相似文献   
9.
负载型酞菁催化剂的制备及其光催化氧化苯酚   总被引:2,自引:0,他引:2       下载免费PDF全文
对四氨基锌酞菁进行化学改性, 引入活性基团, 通过该活性基团将酞菁以共价键的形式负载到纤维素纤维上, 制备得到一种负载型酞菁催化剂. 在可见光照射、氧气为氧化剂条件下, 该负载型锌酞菁催化剂能有效地催化氧化难生物降解的有机污染物苯酚. 实验结果表明, 在pH= 11条件下, 苯酚经6 h光催化氧化后转化率达95%以上, 通过对反应产物进行高效液相色谱(HPLC)测试得知, 其主要降解产物为甲酸、反丁烯二酸和顺丁烯二酸.  相似文献   
10.
吕维扬  孙继安  姚玉元  杜淼  郑强 《化学进展》2020,32(12):2049-2063
层状双金属氢氧化物(LDH)作为无机层状粒子的典型代表,已在众多应用领域展现出巨大潜力。然而,目前的研究大多从LDH的层板组成、层间阴离子种类以及粒子尺寸的角度入手对其进行功能优化,较少关注形貌结构对LDH性能的影响。本文从简要介绍LDH的基本结构和性质出发,详细总结了常规六方片状以及特殊形貌(球状、多面体状、纳米线状、环状等)LDH的制备方法。结合LDH与其他功能粒子复合以提升其综合性能的需求,深入分析了反应配方、合成条件以及基体表面性质对LDH复合材料形貌的调控规律,并综述LDH及其复合物分别作为吸附、催化和分离材料在水处理中的应用。最后,对当前控制合成LDH所存在的难点及其未来研究方向进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号