首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   73篇
  国内免费   26篇
化学   228篇
数学   1篇
物理学   36篇
  2024年   2篇
  2023年   6篇
  2022年   15篇
  2021年   23篇
  2020年   57篇
  2019年   32篇
  2018年   18篇
  2017年   13篇
  2016年   43篇
  2015年   4篇
  2014年   4篇
  2013年   11篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
91.
李孟寅  应佚伦  龙亿涛 《化学学报》2019,77(10):984-988
纳米孔单分子检测技术以其简便、快速、高通量及无需标记等特点, 应用于DNA及蛋白质测序, 更有望实现单分子动态构象变化的研究. Aerolysin(气单胞菌溶素)纳米孔道由于其特有的较长的β-桶限域区(β-barrel)及孔内壁丰富的带电荷氨基酸残基, 在单个寡聚核苷酸分子分析中展现出极高的灵敏性. 本设计利用dA14-4-X, dA14-11-X, dA14-4-X-11-X (X=C, T, G)等单个寡聚核苷酸探针分子, 研究了Aerolysin的两个灵敏区域R1和R2, 探索了R1灵敏区域对单个碱基弱相互作用的差异, 实现区分单个碱基差异. 进一步实验证明, R1灵敏区域对单个碱基类型差异的灵敏区分不受R2灵敏区域被碱基A、C、T占位所影响. 然而, 当R2区域被碱基G占位时, 会使R1区域丧失对整个孔道电流的主导性. 本研究有助于理解Aerolysin对单个寡聚核苷酸分子的超灵敏测量机制.  相似文献   
92.
Three different methods are used to manipulate and control phthalocyanine based single molecular rotors on Au (111) surface: (1) changing the molecular structure to alter the rotation potential; (2) using the tunnelling current of the scanning tunnelling microscope (STM) to change the thermal equilibrium of the molecular rotor; (3) artificial manipulation of the molecular rotor to switch the rotation on or off by an STM tip. Furthermore, a molecular `gear wheel' is successfully achieved with two neighbouring molecules.  相似文献   
93.
The structure of single-molecule single crystals of isotactic polystyrene (i-PS) was investigated by electron diffraction (ED). The nanoscale single-molecule single crystals were found to be more resistant to electron irradiation when compared to the larger crystals of many molecules, as indicated by both observation of ED and high-resolution electron microscopy with increasing radiation dose. It is proposed that since the single-molecule single crystals are very small, the secondary electrons escape more frequently from the crystal so that the radiation damage is reduced. Lattice imaging was achieved at room temperature in the case of single-molecule single crystals because of their stability to electron irradiation. Published 1998 John Wiley & Sons, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  • J Polym Sci B: Polym Phys 36 : 105–112, 1998  相似文献   
    94.
    The synthesis, structural, and magnetic characterization of five new members of the hexanuclear oximate [MnIII6] family are reported. All five clusters can be described with the general formula [MnIII6O2(R-sao)6(R′-CO2)2(sol)x(H2O)y] (where R-saoH2 = salicylaldoxime substituted at the oxime carbon with R = H, Me and Et; R′ = 1-naphthalene, 2-naphthalene, and 1-pyrene; sol = MeOH, EtOH, or MeCN; x = 0–4 and y = 0–4). More specifically, the reaction of Mn(ClO4)2·6H2O with salicylaldoxime-like ligands and the appropriate carboxylic acid in alcoholic or MeCN solutions in the presence of base afforded complexes 15: [Mn6O2(Me-sao)6(1-naphth-CO2)2(H2O)(MeCN)]·4MeCN (1·4MeCN); [Mn6O2(Me-sao)6(2-naphth-CO2)2(H2O)(MeCN)]·3MeCN·0.1H2O (2·3MeCN·0.1H2O); [Mn6O2(Et-sao)6(2-naphth-CO2)2(EtOH)4(H2O)2] (3); [Mn6O2(Et-sao)6(2-naphth-CO2)2(MeOH)6] (4) and [Mn6O2(sao)6(1-pyrene-CO2)2(H2O)2(EtOH)2]·6EtOH (5·6EtOH). Clusters 3, 4, and 5 display the usual [Mn6/oximate] structural motif consisting of two [Mn3O] subunits bridged by two Ooximate atoms from two R-sao2? ligands to form the hexanuclear complex in which the two triangular [Mn3] units are parallel to each other. On the contrary, clusters 1 and 2 display a highly distorted stacking arrangement of the two [Mn3] subunits resulting in two converging planes, forming a novel motif in the [Mn6] family. Investigation of the magnetic properties for all complexes reveal dominant antiferromagnetic interactions for 1, 2, and 5, while 3 and 4 display dominant ferromagnetic interactions with a ground state of S = 12 for both clusters. Finally, 3 and 4 display single-molecule magnet behavior with Ueff = 63 and 36 K, respectively.  相似文献   
    95.
    As for many intrinsically disordered proteins, order–disorder transitions in the N‐terminal oligomerization domain of the multifunctional nucleolar protein nucleophosmin (Npm‐N) are central to its function, with phosphorylation and partner binding acting as regulatory switches. However, the mechanism of this transition and its regulation remain poorly understood. In this study, single‐molecule and ensemble experiments revealed pathways with alternative sequences of folding and assembly steps for Npm‐N. Pathways could be switched by altering the ionic strength. Phosphorylation resulted in pathway‐specific effects, and decoupled folding and assembly steps to facilitate disorder. Conversely, binding to a physiological partner locked Npm‐N in ordered pentamers and counteracted the effects of phosphorylation. The mechanistic plasticity found in the Npm‐N order–disorder transition enabled a complex interplay of phosphorylation and partner‐binding steps to modulate its folding landscape.  相似文献   
    96.
    By coupling a Pt‐catalyzed fluorogenic reaction with the Pt‐electrocatalyzed hydrogen‐oxidation reaction (HOR), we combine single‐molecule fluorescence microscopy with traditional electrochemical methods to study the real‐time deactivation kinetics of a Pt/C electrocatalyst at single‐particle level during electrocatalytic hydrogen‐oxidation reaction. The decay of the catalytic performance of Pt/C could be mainly attributed to the electrocatalysis‐induced etching or dissolution of Pt nanoparticles. Spontaneous regeneration of activity and incubation period of the Pt electrocatalyst were also observed at single‐particle level. All these new insights are practically useful for the understanding and rational design of highly efficient electrocatalysts for application in fuel cells.  相似文献   
    97.
    DNA is increasingly used to engineer dynamic nanoscale circuits, structures, and motors, many of which rely on DNA strand‐displacement reactions. The use of functional DNA sequences (e.g., aptamers, which bind to a wide range of ligands) in these reactions would potentially confer responsiveness on such devices, and integrate DNA computation with highly varied molecular stimuli. By using high‐throughput single‐molecule FRET methods, we compared the kinetics of a putative aptamer–ligand and aptamer–complement strand‐displacement reaction. We found that the ligands actively disrupted the DNA duplex in the presence of a DNA toehold in a similar manner to complementary DNA, with kinetic details specific to the aptamer structure, thus suggesting that the DNA strand‐displacement concept can be extended to functional DNA–ligand systems.  相似文献   
    98.
    Nanopores are used in single‐molecule DNA analysis and sequencing. Herein, we show that Fragaceatoxin C (FraC), an α‐helical pore‐forming toxin from an actinoporin protein family, can be reconstituted in sphingomyelin‐free standard planar lipid bilayers. We engineered FraC for DNA analysis and show that the funnel‐shaped geometry allows tight wrapping around single‐stranded DNA (ssDNA), resolving between homopolymeric C, T, and A polynucleotide stretches. Remarkably, despite the 1.2 nm internal constriction of FraC, double‐stranded DNA (dsDNA) can translocate through the nanopore at high applied potentials, presumably through the deformation of the α‐helical transmembrane region of the pore. Therefore, FraC nanopores might be used in DNA sequencing and dsDNA analysis.  相似文献   
    99.
    The self‐assembly of three giant hexagonal 3d–4f metallocycles with inner diameters of 16.4, 16.5, and 16.4 Å, is described. Hexagonal metallocycles were stacked along the crystallographic c axis, producing unique hexagonal macroscopic tubular single crystals. The assembly mechanism of the tubular crystals was investigated. Remarkably, all three hexagonal metallocycles show typical single‐molecule magnet behavior, benefiting from the ferromagnetic couplings between the 3d and 4f ions.  相似文献   
    100.
    We present a method to artificially induce network formation of membrane glycoproteins and show the precise tuning of their interconnection on living cells. For this, membrane glycans are first metabolically labeled with azido sugars and then tagged with biotin by copper‐free click chemistry. Finally, these biotin‐tagged membrane proteins are interconnected with streptavidin (SA) to form an artificial protein network in analogy to a lectin‐induced lattice. The degree of network formation can be controlled by the concentration of SA, its valency, and the concentration of biotin on membrane proteins. This was verified by investigation of the spatiotemporal dynamics of the SA‐protein networks employing single‐molecule tracking. It was also proven that this network formation strongly influences the biologically relevant process of endocytosis as it is known from natural lattices on the cell surface.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号