首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   4篇
  国内免费   2篇
化学   90篇
晶体学   2篇
力学   3篇
数学   9篇
物理学   13篇
  2023年   1篇
  2021年   6篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   7篇
  2009年   10篇
  2008年   4篇
  2007年   9篇
  2006年   9篇
  2005年   12篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1986年   1篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有117条查询结果,搜索用时 109 毫秒
91.
High intensity microwave radiation effects are demonstrated for electron transfer processes at 25 or 50-μm diameter platinum electrodes immersed in micellar sodium dodecylsulfate (SDS) solutions. First, a solution containing 2 mM Fe(CN)63− and 2 mM Fe(CN)64− in aqueous 0.1 M NaCl with and without SDS is employed to calibrate the electrode temperature and mass transport conditions. Addition of 0.1 M SDS has only a small effect on the microwave enhanced voltammetry for the Fe(CN)63-/4− system. Next, two highly water-insoluble redox systems are studied. A solution of 1 mM tert-butylferrocene in aqueous 0.1 M NaCl containing 0.1 M SDS is shown to give no current response in the absence of microwaves. In the presence of focused microwaves at a platinum disc electrode, a strong current for the one electron oxidation of tert-butylferrocene is detected presumably due to localized disruption of the micellar solution. Concentrations of tert-butylferrocene down to the micromolar level are detected. α-Tocopherol, a lipophilic vitamin and antioxidant, is soluble in aqueous 0.1 M SDS/0.1 M NaCl. In the presence of microwave radiation, a strong and concentration dependent anodic current response consistent with the two-electron oxidation of α-tocopherol is observed. A heptode array of seven individual 50 μm diameter platinum microelectrodes placed in ca. 720 μm distance of each other is shown to allow microwave enhanced currents to be increased sevenfold with each electrode exhibiting the same microwave effect.  相似文献   
92.
Different combinations of various multifunctional monomers and halogen co-agents were used to sensitize the radiation vulcanization of styrene-butadiene rubber (SBR). It was found that combinations of various vinyl compounds with hexachloroethane give rise to vulcanizates with considerably better physico-mechanical properties than those obtained in the presence of one of the two components. The enhancement of vulcanization depends upon the type of the vinyl co-agent used and on the concentrations of the sensitizers. The dose required to achieve vulcanizates with satisfactory physico-mechanical properties was reduced to 3–5 Mrad. Infra-red spectrophotometric analysis, supported by swelling and solubility tests, indicated that the co-agent most probably became a part of the vulcanized rubber. The mechanism of vulcanization in the presence of the two-component co-agent system is suggested.  相似文献   
93.
The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.  相似文献   
94.
A detailed study of gas permeation, thermodynamic properties and free volume was performed for a novel polymer of intrinsic microporosity (PIM-1). Gas permeability was measured using both gas chromatographic and barometric methods. Sorption of vapors was studied by means of inverse gas chromatography (IGC). In addition, positron annihilation lifetime spectroscopy (PALS) was employed for investigation of free volume in this polymer. An unusual property of PIM-1 is a very strong sensitivity of gas permeability and free volume to the film casting protocol. Contact with water in the process of film preparation resulted in relatively low gas permeability (P(O2) = 120 Barrer), while soaking with methanol led to a strong increase in gas permeability (P(O2) = 1600 Barrer) with virtually no evidence of fast aging (decrease in permeability) that is typical for highly permeable polymers. For various gas pairs (O2/N2, CO2/CH4, CO2/N2) the data points on the Robeson diagrams are located above the upper bound lines. Hence, a very attractive combination of permeability and selectivity is observed. IGC indicated that this polymer is distinguished by the largest solubility coefficients among all the polymers so far studied. Free volume of PIM-1 includes relatively large microcavities (R = 5 Å), and the results of the PALS and IGC methods are in reasonable agreement.  相似文献   
95.
In this research, 24 of water-in-diesel fuel nanoemulsions were prepared using mixed nonionic surfactants of sorbitan monooleate and polyoxyethylene sorbitan trioleate (MTS). The emulsions were formed using a new modified low-energy method at hydrophilic-lipophilic balance (HLB) value of 10 and a working temperature of 20°C. Five HLB values of 9.6, 9.8, 10, 10.2, and 10.4 were prepared to identify the optimum value that gives low water droplet size at working conditions as: 5 wt% of water contents, 10 wt% of mixed surfactant concentration, and a temperature of 20°C. The effect of mixed surfactant concentration and water content on the droplet size for 0, 15, 30, 60, and 90 days has been studied. Droplet size of the prepared nanoemulsions was determined by dynamic light scattering and the nanoemulsion stability was assessed by measuring the variation of the droplet size as a function of time. Results show that the mean droplet sizes were formed between 26.23 and 277.1 nm depending on the surfactant concentrations, water contents, and storage time.  相似文献   
96.
The spectral properties of etoricoxib (ETR) at pH 2.0, 6.0 and 10.0 in the presence of cyclodextrins (CDs) were investigated. The absorption spectrum of ETR in acidic medium exhibited two bands centered at 236 and 273 nm, while in basic medium it exhibited two bands centered at 236 and 285 nm. No change in the spectrum was observed in the presence of CDs. The fluorescence emission spectra of ETR in acidic and basic media exhibited one band at 380 nm and another one at 484 nm. The emission band at 484 nm was enhanced when ETR was complexed with β-CD and γ-CD at pH 2.0, 6.0 and 10.0, while the band at 380 nm was enhanced selectively when ETR was complexed with α-CD at pH 2.0. Molecular dynamics simulations computations revealed that at pH 2.0, the sulfonyl moiety of H2ETR2+ is preferentially included within the α-CD cavity, which is believed to cause the enhancement of the band at 380 nm. Moreover, at pH 6.0 and 10.0, the enhancement of the band at 484 nm was related to the inclusion of the chloropyridinyl and methylpyridinyl groups of the bipyridine moiety of HETR+ and ETR within β-CD and γ-CD cavities. Benesi–Hildebrand analysis showed that the ETR/β-CD complex adopts a 1:1 stoichiometry with association constant of K 11?=?64.8 at pH 2.0, K 11?=?105.4 at pH 6.0 and K 11?=?520.5 at pH 10.0.  相似文献   
97.
Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in diverse fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography (GC) techniques. Increasing requirements on analyses of isomeric compounds and the problems encountered in their separation demand a study of more efficient systems which exhibit a high selectivity. Kelker and Fresenius first used nematic liquid crystals as stereospecific stationary phases in GC. Nematic liquid crystal has shown this particular selectivity and sensitivity as stationary phases for the separation of isomers having similar volatilities. Because of their unique selectivity towards rigid solute isomers, liquid crystal stationary phases were considered at one time to be a very promising class of materials that give gas chromatographic separations very different from those that can be obtained with any other stationary phase. Since then, a great deal of attention has been paid to the separation properties of this relatively wide group of substances. Liquid crystal can be used to separate a variety of compounds including isomer mixtures which cannot be separated on conventional stationary phases. This paper aims to review all specific experimental results and presents a comparative analytical study of monomeric nematic liquid crystal stationary phases used in GC. A further contribution of this review is in the field of isomeric compounds separation.  相似文献   
98.
Let R be any commutative ring with identity, and let C be a (finite or infinite) cyclic group. We show that the group ring R(C) is presimplifiable if and only if its augmentation ideal I(C) is presimplifiable. We conjecture that the group rings R(C n ) are presimplifiable if and only if n = p m , p ∈ J(R), p is prime, and R is presimplifiable. We show the necessity of n = p m , and we prove the sufficiency when n = 2, 3, 4. These results were made possible by a new formula derived herein for the circulant determinantal coefficients.  相似文献   
99.
The CO2 sequestration is one of the most promising solutions to tackle global warming. In this study, spherical mesoporous silica particles (MPS-S) and rod-shaped mesoporous silica particles (MPS-R) loaded with Cu nanoparticles were selectively prepared and employed for CO2 adsorption. For the first time uniform Cu nanoparticles were incorporated into the rod-shaped mesoporous silica particles by post-synthesis modification using both N-[3-(trimethoxysilyl)propyl]ethylenediamine (PEDA) and ethylenediamine (EDA) as coupling agents. The physiochemical properties of the mesoporous and copper grifted silica composites were investigated by CHN elemental analysis, FTIR spectroscopy, thermogravimetric analysis, X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), surface area analysis, scanning, transmission electron microscopy and gas analysis system (GSD 320, TERMO). The mesoporous silica shows highly ordered mesoporous structures, with the rod-shaped particles having a higher surface area than the spherical ones. Copper nanoparticles with an average diameter of 6.0 nm were uniformly incorporated into the MPS-S and MPS-R. Moreover, Cu-loaded mesoporous silica exhibits up to 40% higher CO2 adsorption capacity than the bare MPS. The MPS-R modified with Cu nanoparticles showed a maximum CO2 adsorption capacity of 0.62 mmol/g and the humidity showed a slight negative effect on CO2 uptake process. The enhancement of CO2 adsorption onto transition metal/mesoporous substrates provides basis for imminent CO2 sequestration.  相似文献   
100.
A novel triptycene-based polymer of intrinsic microporosity (Trip-PIM) displays enhanced surface area (1065 m2 g(-1)) and reversibly adsorbs 1.65% hydrogen by mass at 1 bar/77 K and 2.71% at 10 bar/77 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号