首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  国内免费   78篇
化学   100篇
物理学   3篇
  2023年   2篇
  2022年   8篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2016年   3篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   6篇
  2008年   3篇
  2007年   4篇
  2006年   7篇
  2005年   14篇
  2004年   13篇
  2003年   13篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
81.
溶剂对聚酰亚胺电化学行为的影响   总被引:3,自引:1,他引:2  
运用电化学循环伏安等方法研究了有机溶剂对可溶性聚酰亚胺(PI)电化学行为的影响.结果表明,PI在一些溶剂中能进行电化学反应.红外光谱研究表明溶剂对PI电化学行为的影响主要取决于不同结构的溶剂与PI之间的相互作用.  相似文献   
82.
将大环化合物四磺酸基酞菁钴(CoTSPc)加入到电解液中, 研究了其对Pt阴极催化氧还原以及耐甲醇性能的影响. 实验结果发现, 这种影响与加入到溶液中的CoTSPc的浓度有关, 当溶液中加入CoTSPc的浓度为0.09 mmol•L-1时, Pt电极催化氧还原的电流基本不变, 而有效抑制了甲醇在阴极的氧化, 使甲醇氧化的峰电流值下降79.7%.  相似文献   
83.
硫堇与DNA分子作用机理的光谱研究   总被引:12,自引:0,他引:12  
用紫外-可见吸收光谱、荧光光谱、圆二色谱和光电子能谱等光谱方法研究了硫堇(TH)与小牛胸腺DNA(CT-DNA)的作用机理。实验结果表明,在pH 7.2的磷酸盐缓冲溶液中, TH与CT-DNA之间的作用方式以嵌入作用为主,嵌入作用使TH的紫外最大吸收峰强度减小,且峰位发生红移。由紫外光谱实验结果线性拟合求得TH与CT-DNA的表观结合常数K=1.45×104 L·mol-1。荧光光谱实验结果表明:TH与CT-DNA的嵌入作用使TH的荧光发生强烈猝灭,猝灭常数KSV为1.01×104 L·mol-1。嵌入作用位点主要发生在CT-DNA的鸟嘌呤(G)-胞嘧啶(C)碱基序列富集区。通过对TH的光电子能谱中N,S原子的结合能变化分析,TH分子以杂环上S原子端与CT-DNA的G-C碱基对结合,两者的相互作用对CT-DNA的二级结构构象产生影响。  相似文献   
84.
直接甲醇燃料电池;Pd-Fe/C催化剂;氧还原;合金化  相似文献   
85.
为给农药西维因检测提供一种新方法,根据西维因抑制乙酰胆碱酯酶活性的原理,以黑珍珠2000(BP2000)为乙酰胆碱酯酶的固定化材料,采用滴凃电极法构建了基于乙酰胆碱酯酶的西维因生物传感平台.结果表明,固定在BP2000上的乙酰胆碱酯酶保持了对氯化乙酰胆碱的催化活性,并且由于BP2000材料的引入,提升了电极有效的电化学活性表面积,而且电极上物质的电化学氧化拥有较低氧化电位(0.630 V)并伴随质子传输.由BP2000搭建成功的乙酰胆碱酯酶生物传感平台对西维因检测的线性响应范围为2.0 ng·m L-1~12.5 ng·m L-1,检测限为3.15 ng·m L-1.本研究对酶生物传感平台和酶生物燃料电池体系中酶电极的构建提供了一种简单方法及高效载体.  相似文献   
86.
燃料电池是一种将燃料反应的化学能转化为电能的装置,可分为氢氧质子交换膜燃料电池(PEMFCs)、直接甲醇燃料电池(DMFCs)和直接甲酸燃料电池等.与 PEMFCs相比, DMFCs以甲醇为燃料,燃料的储存运输和电池操作运行具有较高的安全性,所以近年来受到人们的广泛关注.
  膜电极组件(MEA)是 DMFCs的核心部分,由气体扩散层(GDL)、催化层(CL)和质子交换膜(PEM)三部分组成. GDL用于提高电池传质能力,并同时作为 MEA的集流体. PEM主要用于隔离燃料和氧气,进行质子传导. CL是 MEA中的主要组成部分,为电化学反应提供场所.
  催化层由催化剂,质子传输介质和电子传输介质组成.通常,阳极催化剂采用 PtRu/C,阴极采用 Pt/C,质子传输介质为全氟磺酸树脂,如 Nafion. CL的结构对电池性能有直接的影响,因此人们对 CL的结构进行了详细的研究,并通过调节 CL亲水性能、梯度催化层的结构设计等优化其结构.研究表明,当 CL中 Nafion含量为33 wt.%, PEMFCs具有最佳的电池性能. DMFCs与 PEMFCs对 MEA要求不同,其阴极更容易发生水淹现象.本文结合非接触式三维光学轮廓仪、接触角测试系统和电化学测试对阴极不同 Nafion含量的膜电极进行了表面形貌、亲水性、循环伏安和 DMFC性能测试.
  本文利用喷涂法制备了 GDE,然后与 Nafion115热压形成 MEA.由三维表面形貌图可以看出,随着催化层中 Nafion含量的增加, GDE表面的粗糙度变大,尤其是 N35和 N45.理论上,表面粗糙有利于 Pt的暴露和传质扩散,但是其电池性能并未与粗糙度呈现出正相关的关系,因为 Nafion含量高于35 wt.%, Pt被 Nafion过度包裹,抑制了 O2至催化剂表面的传输,且随着 Nafion含量由15 wt.%增加至45 wt.%,其 GDE表面的接触角由166.8o减至143.1o,说明 CL的亲水性增强,易导致阴极产生的水无法及时排出,从而造成阴极水淹现象.
  从不同 Nafion含量制备 MEA的 CV图可以看出,随着 Nafion含量的增加, Pt的电化学活性面积(ESA)增加.当 Nafion含量较少时, Nafion无法对全部 Pt纳米粒子(NPs)形成包覆或无法形成连贯的质子传输通道,从而导致大部分的 Pt NPs催化活性较低变为无效 Pt.而有效 Pt NPs要求与连贯的质子传输通道相连接.当 Nafion含量高于35 wt.%时,其 ESA基本保持不变,因为 Pt载量一定,从而限制了 ESA,此时达到该载量条件下的极限 ESA.但是电池极化曲线表明,30 wt.% Nafion含量的 MEA具有最佳的电池性能.因为有效 Pt NPs不一定是高效的,当他们全部被 Nafion包裹后, O2只能依靠溶解在 Nafion中才可以到达催化剂表面,从而阻碍传质.只有 Pt NPs表面包裹和暴露面积达到一定比例时才变得高效.所以当 Nafion含量低于30 wt.%时,主要由质子传输通道导致的有效 Pt NPs较少;当 Nafion含量高于30 wt.%时,出现 Nafion过度包裹 Pt NPs,阻碍 O2传质.因此, Nafion含量30 wt.%时, Pt的包裹面积和裸露面积达到所研究的最佳状态.  相似文献   
87.
直接甲酸燃料电池用碳载铁卟啉-Au复合阴极催化剂的性能   总被引:1,自引:0,他引:1  
研究了用于直接甲酸燃料电池(DFAFC)的碳载铁卟啉(FeTPP/C)、金复合阴极催化剂(FeTPP-Au/C)对氧还原的电催化性能和抗甲酸能力。结果表明,FeTPP-Au/C催化剂对氧气还原反应的电催化活性要远优于碳载铁卟啉(FeTPP/C)和碳载Au(Au/C)催化剂。而且,FeTPP-Au/C催化剂对甲酸氧化没有催化活性,因此,FeTPP-Au/C催化剂也有很好的抗甲酸能力。所以,FeTPP-Au/C催化剂适合作为DFAFC的阴极催化剂。  相似文献   
88.
开发高性能、 低成本的氧析出反应(OER)电催化剂是促进质子交换膜水电解(PEMWE)制氢规模化应用的关键。迄今为止, OER催化剂的最佳选项仍为贵金属铱(Ir), 但其仍存在活性不足和储量稀缺的问题, 进而增加了材料成本和电力成本。因此, 开发低Ir载量、 高活性和稳定性间距, 且能够满足PEMWE设备中大电流密度和长期运行要求的OER催化剂是十分必要的。这些目标的实现需要深入理解酸性OER机制、明晰材料设计方法, 并建立可靠的性能评估指标(特别是对耐久性的评估)。综上,本文首先系统总结了目前被广泛接受的酸性OER活性表达机制(即吸附析出机制、 晶格氧氧化机制和多活性中心机制)和失活机制(即活性物种溶解、晶相和形态演化、 催化剂脱落和活性位点阻塞), 为催化剂的微观结构设计提供指导。其次, 我们讨论了最近报道的几类低铱OER催化剂, 包括多金属合金氧化物、 负载型催化剂、具有特殊空间结构的催化剂和单位点催化剂, 并重点描述低Ir催化剂中的性能如何得以调控以及其中潜在的构效关系。随后, 我们介绍了常用的催化剂稳定性评价指标、 催化剂失活表征技术以及模拟PEMWE实际操作条件的催化剂寿命测试方法,希望为催化剂筛选提供依据。最后, 针对未来可用于PEMWE体系的低铱OER催化剂的探索提出了一些可行建议。  相似文献   
89.
直接甲醇燃料电池中质子交换膜的研究进展   总被引:2,自引:0,他引:2  
质子交换膜是直接甲醇燃料电池(DMFC)的关键部件之一. 本文系统地介绍了近三年来DMFC中质子交换膜研究的最新进展.  相似文献   
90.
研究了三氧杂环己烷在不同浓度、不同温度和不同酸度时于光滑铂电极上的电化学行为, 初步分析了三氧杂环己烷的反应机理.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号