首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31974篇
  免费   1286篇
  国内免费   332篇
化学   17080篇
晶体学   423篇
力学   1444篇
综合类   2篇
数学   5436篇
物理学   9207篇
  2024年   7篇
  2023年   337篇
  2022年   344篇
  2021年   644篇
  2020年   721篇
  2019年   512篇
  2018年   828篇
  2017年   1007篇
  2016年   1130篇
  2015年   1193篇
  2014年   1576篇
  2013年   2249篇
  2012年   2524篇
  2011年   2811篇
  2010年   2203篇
  2009年   2036篇
  2008年   2269篇
  2007年   2143篇
  2006年   2115篇
  2005年   1617篇
  2004年   1200篇
  2003年   1077篇
  2002年   757篇
  2001年   487篇
  2000年   448篇
  1999年   287篇
  1998年   159篇
  1997年   155篇
  1996年   163篇
  1995年   112篇
  1994年   60篇
  1993年   44篇
  1992年   53篇
  1991年   44篇
  1990年   33篇
  1989年   45篇
  1988年   23篇
  1987年   22篇
  1986年   6篇
  1985年   42篇
  1984年   14篇
  1983年   19篇
  1982年   22篇
  1981年   13篇
  1980年   9篇
  1979年   7篇
  1978年   7篇
  1977年   3篇
  1976年   3篇
  1970年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
A recently discovered 2D transition titanium metal carbides also called as MXenes (Ti3C2Tx)-based nanocomposite was prepared with Cu2O through wet precipitation technique, and these materials were further developed as the electrode for sensing glucose by chronoamperometry technique. The prepared MXene-Cu2O (Ti3C2Tx-Cu2O) nanocomposite was characterized by XRD, FTIR, UV–Vis spectroscopy, FE-SEM, EDAX, and Raman spectroscopy. Morphological studies of the composites revealed that the micro-octahedral shape of Cu2O is distributed on the surface of MXene with size larger than bare Cu2O. Further, the prepared composite material was fabricated as a sensing probe, and the electrochemical activities were examined by cyclic voltammetric analysis (CV) and chronoamperometric (CA) methods. From the CV and CA investigation, the current response was higher for the composite than the bare material (Cu2O & MXene) in the presence of glucose. The amperometric investigation of MXene-Cu2O composite for the detection of glucose shows a broad linear range (0.01–30 mM) with a sensitivity of 11.061/μAmM cm?2 and a detection limit of 2.83 μM. Further, the fabricated sensor exhibits good selectivity with interfering species like NaCl, fructose, sucrose, urea, ascorbic acid, lactose, short response time, stability, good reproducibility, and compatibility with human serum sample. From the investigation, the prepared MXene-Cu2O composite is a good candidate for the direct detection of glucose molecules and is also well suitable for clinical diagnosis.  相似文献   
82.
83.
84.
We consider a model with multi-charged particles, including vector-like fermions, and a charged scalar under a local \begin{document}$ U(1)_{\mu - \tau} $\end{document} symmetry. We search for an allowed parameter region explaining muon anomalous magnetic moment (muon \begin{document}$ g-2 $\end{document}) and \begin{document}$ b \to s \ell^+ \ell^- $\end{document} anomalies, satisfying constraints from the lepton flavor violations, Z boson decays, meson anti-meson mixing, and collider experiments. Via numerical analysis, we explore the typical size of the muon \begin{document}$ g-2 $\end{document} and Wilson coefficients to explain the \begin{document}$ b \to s \ell^+ \ell^- $\end{document} anomalies in our model when all other experimental constraints are satisfied. Subsequently, we discuss the collider physics of the multicharged vectorlike fermions, considering a number of benchmark points in the allowed parameter space.  相似文献   
85.
Metal oxide photocatalysts (MOPCs) decompose organic molecules under illumination. However, the application of MOPCs in industry and research is currently limited by their intrinsic hydrophilicity because MOPCs can be wetted by most liquids. To achieve liquid repellency, the surface needs to possess a low surface energy, but most organic molecules with low surface energy are degraded by photocatalytic activity. Herein, current methods to achieve liquid repellency on MOPCs, while preventing degradation of hydrophobic coatings, are reviewed. Classically, composite materials containing MOPCs and hydrophobic organic compounds possess good liquid repellency. However, composites normally form irregular coatings and are hard to prepare on surfaces such as those that are mesoporous or nanostructured. In addition, the adhesion of composites to substrates is often weak, resulting in delamination. Recent studies have shown that the direct grafting reaction of polydimethylsiloxane (PDMS) from silicone oil (methyl-terminated PDMS) under illumination results in a stable polymer brush. This easy and simple grafting method allows us to create stable liquid-repellent surfaces on MOPCs of various types, structures, and sizes. In particular, super-liquid-repellent drops with an underlying air layer can be created on PDMS-grafted nano-/microstructured MOPCs. Potential applications of surfaces combining liquid repellency and photocatalytic activity are also discussed; thus offering new ways of using MOPCs in a wider range of applications.  相似文献   
86.
Medium-energy ion scattering (MEIS) has been used for quantitative depth profiling with single atomic layer resolution to determine the composition, thickness, and interface structure of ultrathin films and nanoparticles. To assure the consistency of the MEIS analysis, an international round-robin test (RRT) with nominally 1-, 3-, 5-, and 7-nm thick HfO2 films was conducted among 12 institutions. The measurements were performed at each participating laboratory under their own conditions, and the collected data were analyzed. For the data analysis, the Moliere potential, the stopping and range of ions in matter (SRIM) 95 and new fitted electronic stopping power and the Chu straggling were used. For analyzing the MEIS data from the magnetic sector and electrostatic analyzers, the neutralization corrections of Marion and Young for 100-keV H+ and He+ ions and of Armstrong for 400- to 500-keV He+ ions were used. The standard deviations were 5.3% for the composition, 15.3% for the thickness, and 13.3% for the Hf content, and they were improved to 7.3%, 4.5%, and 7.0% by using refitted electronic stopping powers based on the experimental data. Hence, this study suggests that correct electronic stopping powers are critical for quantitative MEIS analysis.  相似文献   
87.
Abstract

In this study, as a continuous effort for searching efficient blue-emitting materials, we designed and synthesized materials based on indeno[1,2-a]arene. OLED devices using these materials were fabricated in the following sequence; ITO (180?nm)/N,N'-diphenyl-N,N'-(2-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) (50?nm)/emitting materials (30?nm)/4,7-diphenyl-1,10-phenanthroline (Bphen) (30?nm)/Liq/Al (2/100?nm). Particularly, a device using 7,7-dimethyl-7H-indeno[1,2-a]pyrene as emitter showed maximum values of luminous efficiency, power efficiency, and external quantum efficiency of 1.10?cd/A, 0.49?lm/W, 1.47% at 20?mA/cm2, respectively with CIE (x,y) coordinates of (0.15, 0.08) at 6.0V.  相似文献   
88.
Multiple exciton generation (MEG) has great potential to improve the Shockley-Queisser (S-Q) efficiency limitation for colloidal quantum dot (CQD) solar cells. However, MEG has rarely been observed in CQD solar cells because of the loss of carriers through the transport mechanism between adjacent QDs. Herein, we demonstrate that excess charge carriers produced via MEG can be efficiently extracted using monolayer PbS QDs. The monolayer PbS QDs solar cells exhibit α=1 in the light intensity dependence of the short-circuit current density Jsc (JscIα) and an internal quantum efficiency (IQE) value of 100 % at 2.95 eV because of their very short charge extraction path. In addition, the measured MEG threshold is 2.23 times the bandgap energy (Eg), which is the lowest value in PbS QD solar cells. We believe that this approach can provide a simple method to find suitable CQD materials and design interface engineering for MEG.  相似文献   
89.
The E. coli siderophore enterobactin, the strongest FeIII chelator known to date, forms hexacoordinate complexes with SiIV, GeIV, and TiIV. Synthetic protocols have been developed to prepare non-symmetric enterobactin analogues with varying denticities. Various benzoic acid residues were coupled to the macrocyclic lactone to afford a diverse library of ligands. These enterobactin analogues were bound to SiIV, GeIV, and TiIV, and the complexes were investigated through experimental and computational techniques. The binding behavior of the synthesized chelators enabled assessment of the contribution of each of the phenolic hydroxy groups in enterobactin to metal-ion complexation. It was found that at least four O-donors are needed for enterobactin derivatives to act as metal binders. Density functional theory calculations indicate that the strong binding behavior of enterobactin can be ascribed to a diminished translational entropy penalty, a common feature of the chelate effect, coupled with the structural arrangement of the three catechol moieties, which allows the triseryl base to be installed without distorting the preferred local metal-binding geometry of the catecholate ligands.  相似文献   
90.
Three distinct conformational structures of carbaoctaphyrins were prepared by incorporating bis-4,4'-biphenyl units in the macrocyclic core. The free-base form adopts a figure-eight conformation, whereas the protonation triggers a conformational change with a pyrrole ring inversion and acquires an open-framework structure. The insertion of bis-RhI metal ion in the macrocyclic core affords a singly twisted conformational structure. Furthermore, the local aromaticity in the bis-4,4'-biphenyl ring dominates the overall macrocyclic aromaticity in all three forms, and thus adopts nonaromatic characteristics. These results are supported by spectral as well as theoretical studies, and they are unambiguously confirmed by X-ray crystal analyses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号