首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   30篇
  国内免费   3篇
化学   118篇
力学   138篇
数学   127篇
物理学   94篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   18篇
  2020年   19篇
  2019年   21篇
  2018年   36篇
  2017年   21篇
  2016年   29篇
  2015年   13篇
  2014年   17篇
  2013年   17篇
  2012年   33篇
  2011年   57篇
  2010年   35篇
  2009年   35篇
  2008年   41篇
  2007年   16篇
  2006年   6篇
  2005年   7篇
  2004年   10篇
  2003年   10篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有477条查询结果,搜索用时 31 毫秒
81.
In this work, an analysis is performed to find the series solution of the boundary layer Falkner-Skan equation for wedge. The boundary layer similarity equation takes into account a special form of the chosen magnetic field. The results are obtained by solving the nonlinear differential system by homotopy analysis method (HAM). Numerical solution for the skin friction coefficient is also tabulated and compared with HAM.  相似文献   
82.
83.
Here thermal dependence conductivity and nonlinear convection features in third-grade liquid flow bounded by moving surface having varying thickness are formulated. Stagnation point flow is considered. Revised FourierFick relations and double stratification phenomena are utilized for modeling energy and concentration expressions. Mathematical model of considered physical problem is achieved by implementing the idea of boundary layer theory. The acquired partial differential system is transformed into ordinary ones by employing relevant variables. The homotopic scheme yield convergent solutions of governing nonlinear expressions. Graphs are constructed for distinct values of physical constraints to elaborate the heat/mass transportation mechanisms.  相似文献   
84.
A boundary layer flow of a non-Newtonian fluid in the presence of nanoparticles is examined. The flow is caused by a vertical stretching sheet. Convergence of the solution obtained is checked. The values of velocity, temperature, skin friction, and Nusselt number in the boundary layer are obtained.  相似文献   
85.
The steady flow and heat transfer of a couple stress fluid due to an inclined stretching cylinder are analyzed. The thermal conductivity is assumed to be temperature dependent. The governing equations for the flow and heat transfer are transformed into ordinary differential equations. Series solutions of the resulting problem are computed. The effects of various interested parameters, e.g., the couple stress parameter, the angle of inclination, the mixed convection parameter, the Prandtl number, the Reynolds number, the radiation parameter, and the variable thermal conductivity parameter, are illustrated. The skin friction coefficient and the local Nusselt number are computed and analyzed. It is observed that the heat transfer rate at the surface increases while the velocity and the shear stress decrease when the couple stress parameter and the Reynolds number increase. The temperature increases when the Reynolds number increases.  相似文献   
86.
This article investigates the three-dimensional flow of Powell–Eyring nanofluid with thermophoresis and Brownian motion effects. The energy equation is considered in the presence of thermal radiation. The heat and mass flux conditions are taken into account. Mathematical formulation is carried out through the boundary layer approach. The governing partial differential equations are transformed into the nonlinear ordinary differential equations through suitable variables. The resulting nonlinear ordinary differential equations have been solved for the series solutions. Effects of emerging physical parameters on the temperature and nanoparticles concentration are plotted and discussed. Numerical values of local Nusselt and Sherwood numbers are computed and examined.  相似文献   
87.
This study aimed to comprehensively investigate the optoelectronic and magnetic properties of Mo, Zn/LiNbO3 (1 1 1) material. The primary objectives were to understand the potential for manipulating the material's magnetism and to elucidate the origin of spin-polarized states and magnetic moments, particularly with respect to the unpaired d orbitals of Nb, Mo, and Zn atoms. To achieve these objectives, we employed the Pardew–Burke–Ernzerhof (PBE) method within the Generalized Gradient Approximation (GGA + U) framework. This computational approach allowed us to examine the optoelectronic and magnetic characteristics of the material in detail. Our research yielded several key findings that enhance our understanding of Mo, Zn/LiNbO3 (1 1 1) material. We observed a modest improvement in the material's absorption capacity within the visible spectrum, accompanied by a discernible red-shift. Notably, our study involved the calculation of the dielectric function and refractive constant of the material, revealing a strong correlation between absorption trends and the dielectric constant. Furthermore, our investigation uncovered that Mo, Zn/LiNbO3 (1 1 1) exhibits distinct conduction and valence bands, with p and d orbitals predominantly contributing to each, respectively. The energy gap of the material falls within a range of 0.30–1.04 eV. A particularly significant finding was the narrower band gap of Mo, Zn/LiNbO3 (1 1 1) material, which can be attributed to the superposition of Mo-d and Zn-p orbit energy levels with O-p orbit energy levels, ultimately forming a covalent bond. Importantly, our research demonstrated the material's heightened optical absorption within the visible spectrum, suggesting its suitability for various photonic and optoelectronic applications. Additionally, we calculated a wide range of optical characteristics, including the dielectric function, absorption coefficient, energy loss, reflectivity, refractive index, extinction coefficient, and optical conductivity, providing a comprehensive assessment of the material's optical properties.  相似文献   
88.
M. Mustafa  S. Hina  T. Hayat  B. Ahmad 《Meccanica》2014,49(3):521-534
This article investigates the effects of an induced magnetic field on the mixed convection peristaltic motion of nanofluid in a vertical channel. Transport equations involve the combined effects of Brownian motion and thermophoretic diffusion of nanoparticles. Analysis has been addressed subject to long wavelength and low Reynolds number assumptions. Explicit expressions of stream function, magnetic force function, temperature and nanoparticles concentration are developed. Analytic expressions are validated with the obtained numerical solutions. Peristaltic pumping rate is found to increase upon increasing the strengths of electric and magnetic fields and the buoyancy force due to temperature gradient. Moreover temperature rises and nanoparticles concentration decreases with an intensification in the Brownian motion effect.  相似文献   
89.
Okadaic acid (OA), a lipophilic phycotoxin is mainly produced by toxigenic dinoflagellates. The need to develop high performing methods for OA analysis able to improve the traditional ones is evident. In this work, a novel experimental methodology for label-free detection of OA was developed. Protein G magnetic beads (protein-G-MBs) modified gold electrode was used to immobilize anti-OA monoclonal antibody (anti-OA-MAb). Preliminary, colorimetric tests were performed in order to validate protein-G-MBs and anti-OA-MAb reaction. Electrochemical detection was carried out by differential pulse voltammetry in ferri/ferrocyanide solution. The limit of detection value obtained (0.5 μg L−1) validated the developed electrochemical immunosensor as a promising tool for routine use. The matrix effect and the recovery rate were also assessed with real samples, showing a good percentage of recovery.  相似文献   
90.
This investigation reports the three-dimensional flow of Jeffrey fluid over a linearly stretching surface. Transformation method has been utilized for the reduction of partial differential equations into the ordinary differential equations. The solutions of the nonlinear systems are presented by a homotopy analysis method (HAM). The reported graphical results are analyzed. A comparative study with the previous results of viscous fluid in the literature is made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号