首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   8篇
  国内免费   2篇
化学   104篇
晶体学   1篇
力学   1篇
数学   4篇
物理学   14篇
  2022年   2篇
  2021年   1篇
  2020年   7篇
  2019年   6篇
  2018年   12篇
  2017年   8篇
  2016年   10篇
  2015年   7篇
  2014年   12篇
  2013年   14篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2003年   1篇
排序方式: 共有124条查询结果,搜索用时 656 毫秒
81.
A new pair potential energy function of neon has been determined via the inversion of reduced viscosity collision integrals at zero pressure and fitted to obtain an analytical potential form. The pair potential reproduces the second virial coefficient, viscosity, thermal conductivity, and self-diffusion coefficient of neon in a good accordance with experimental data over wide ranges of temperature and density. We have also performed molecular dynamics simulation to obtain some thermodynamics, transport, and structural properties of fluid neon at different temperatures and densities using our calculated pair potential supplemented by quantum corrections following the Feynman–Hibbs approach. The significance of this work is that the three-body expression of Wang and Sadus (J Chem Phys 125:144509–1, 2006) can be used to improve the prediction of the pressures of neon without requiring an expensive three-body calculation. The molecular dynamics simulation of neon has been also used to determine a new equation of state for neon. Our results are in a good agreement with experiment and literature values.  相似文献   
82.
We have performed molecular dynamics simulations to obtain internal energy and pressure of helium–neon and helium–krypton mixtures at different densities using accurate recently two-body ab initio potentials supplemented by quantum corrections following the Feynman–Hibbs approach. The significance of this work is that the three-body expression of Wang and Sadus [22] was used to improve prediction of the pressures and internal energies of helium + krypton and helium + neon mixtures without requiring an expensive three-body calculation. Our results show a good agreement with the corresponding experimental data.  相似文献   
83.
Ionic liquids (ILs) are often considered green solvents capable of replacing traditional organic solvents and have been extensively studied in materials chemistry and catalysis. In this study, the direct polycondensation of N,N′‐(4,4′‐oxydiphthaloyl)‐bis‐L ‐phenylalanine diacid with various aromatic diamines was performed in IL media. The influence of various reaction parameters, including the nature of the IL cations and anions, the monomer structures, the reaction temperature, and the reaction time, on the yields and inherent viscosities of the resulting optically active poly(amide imide)s (PAIs) were investigated. Direct polycondensation successfully preceded in ILs and triphenyl phosphite (a condensing agent) without any additional extra components, such as LiCl and pyridine, which are used in similar reactions in ordinary molecular solvents. Therefore, ILs can act as both solvents and catalysts. Various high‐molecular‐weight, optically active PAIs were obtained in high yields with inherent viscosities ranging from 0.54 to 0.88 dL/g. This method was also compared with three other classical methods for the polycondensation of the aforementioned monomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6545–6553, 2005  相似文献   
84.
The objectives of this research were the production of Eudragit nanoparticles of carvedilol, an anti-hypertension drug, for enhancement of its absorption and optimization of drug release. Nanoparticles were prepared by emulsification-solvent evaporation or diffusion methods. The statistical surface response design, based on the Box-Behnken model, was applied to evaluate the effect of four variables, each in two levels, on specifications of nanoparticles. An intelligent modeling system was established according to genetic algorithm to predict drug release from the nanoparticles. The neural network-genetic algorithm model showed a more precise method than surface response design in the prediction of the release properties of carvedilol from Eudragit nanoparticles.  相似文献   
85.
Nano-CaO was prepared by calcination of ball-milled chicken eggshell waste. This novel, bioactive, heterogeneous catalyst, which had high catalytic activity and reusability, was used in the green synthesis of pyrano[4,3-b]pyrans via condensation of various aromatic aldehydes, malononitrile, and 4-hydroxy-6-methyl-2H-pyran-2-one at 120℃ under solvent-free conditions. The reaction proceeded to completion within 5-45 min in 93%-98% yield. The nano-CaO was fully characterized by scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, X-ray fluorescence spectroscopy, and thermal gravimetric, surface area, and elemental analyses.  相似文献   
86.
87.
3,3′,4,4′‐Diphenylsulfonetetracarboxylic dianhydride was reacted with L ‐phenylalanine in acetic acid, and the resulting imide acid ( 3 ) was obtained in high yield. The diacid chloride ( 4 ) was obtained from its diacid derivative ( 3 ) by reaction with thionyl chloride. The polycondensation reaction of 4 with several aromatic diamines such as 4,4′‐sulfonyldianiline, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylether, p‐phenylenediamine, m‐phenylenediamine, 2,4‐diaminotoluene, and 1,5‐diaminonaphthalene was developed with a domestic microwave oven in the presence of trimethylsilyl chloride and a small amount of a polar organic medium such as o‐cresol. The polymerization reactions were also performed with two other methods: low‐temperature solution polycondensation in the presence of trimethylsilyl chloride and reflux conditions. A series of optically active poly(amide‐imide)s with moderate inherent viscosities of 0.21–0.42 dL/g were obtained in high yield. All of the aforementioned polymers were fully characterized by IR, 1H NMR elemental analyses, and specific rotation techniques. Some structural characterizations and physical properties of these optically active poly(amide‐imide) s are reported. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3974–3988, 2003  相似文献   
88.
A facile, high-yielding and straightforward methodology for the copper-catalyzed synthesis of 1,4-disubstituted 1,2,3-triazoles in water, using in situ prepared copper nanoparticles (NPs) on modified poly(styrene-co-maleic anhydride) [SMA] catalyst, is reported. The polymer support was easily prepared from the reaction of SMA with 4-aminopyridine and subsequently underwent reaction with CuI NPs. The catalyst was applied for the preparation of triazoles under air, followed by chromatographic separation of the products. The polymer-supported catalyst not only showed high catalytic activity but also showed high 1,4-regioselectivity for the [3 + 2] Huisgen cycloaddition in water as solvent. The products were obtained in good to excellent yields in all cases. The catalyst can be used without pre-activation and reloaded for at least five runs without significant decrease in its activity. The catalyst was characterized by SEM, energy dispersive spectroscopy analysis of X-rays, and inductively coupled plasma.  相似文献   
89.
A new pair-potential energy function of nitrogen has been determined via the inversion of reduced viscosity collision integrals and fitted to obtain an analytical potential form. The pair-potential reproduces the second virial coefficient, viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor of nitrogen in a good accordance with experimental data over wide ranges of temperatures and densities. We have also performed the molecular dynamics simulation to obtain pressure, internal energy, heat capacity at constant volume, and self-diffusion coefficient of nitrogen at different temperatures and densities using our calculated pair-potential and some other potentials. The molecular dynamics of the nitrogen molecules has been also used to determine nitrogen equation of state in two (low and high) pressure ranges. Our results are in a good agreement with experiment and literature values.  相似文献   
90.
We theoretically investigate the phase-dependent heat transport of a temperature-biased granular Josephson junction in the presence of a perpendicular magnetic field. We illustrate the influence of geometry of the junction on the thermal current. The use of granular Josephson junction rather than bulk one makes significant changes in the heat current behavior. The heat current diffraction pattern of the rectangular, circular and annular geometries with no trapped fluxons demonstrates similar to the current of s-wave superconducting junction. By increasing the number of trapped fluxon, the pattern of current behaves such as d-wave superconducting junction. The feasibility of using granular superconductors, with different geometries, controlled by the magnetic field provides an appropriate tool to obtain the desired result for a specific application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号