首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   14篇
  国内免费   4篇
化学   73篇
晶体学   3篇
综合类   1篇
物理学   38篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   7篇
  2015年   3篇
  2014年   10篇
  2013年   4篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有115条查询结果,搜索用时 31 毫秒
71.
Type I heterojunction films of α-Fe2O3/ZnO are reported here as a non-titania based photocatalyst, which shows remarkable enhancement in the photocatalytic properties towards stearic acid degradation under UVA-light exposure (λ=365 nm), with a quantum efficiency of ξ=4.42±1.54×10−4 molecules degraded/photon, which was about 16 times greater than that of α-Fe2O3, and 2.5 times greater than that of ZnO. Considering that the degradation of stearic acid requires 104 electron transfers for each molecule, this represents an overall quantum efficiency of 4.60 % for the α-Fe2O3/ZnO heterojunction. Time-resolved transient absorption spectroscopy (TAS) revealed the charge-carrier behaviour responsible for this increase in activity. Photogenerated electrons, formed in the ZnO layer, were transferred into the α-Fe2O3 layer on the pre-μs timescale, which reduced electron–hole recombination. This increased the lifetime of photogenerated holes formed in ZnO, which oxidise stearic acid. The heterojunction α-Fe2O3/ZnO films grown herein show potential environmental applications as coatings for self-cleaning windows and surfaces.  相似文献   
72.
The nature of the physical mechanisms responsible for the structural modification of the γ‐Fe2O3 nanoparticles under laser irradiation has been investigated by Raman spectroscopy. In situ micro‐Raman measurements were carried out on as‐prepared γ‐Fe2O3 nanoparticles about 4 nm in size as a function of laser power and on annealed γ‐Fe2O3 particles. A baseline profile analysis clearly evidenced that the phase transition from maghemite into hematite is caused by local heating due to laser irradiation with an increase of grain size of nanoparticles. This increasing was clearly determined by X‐ray diffraction from 4 nm in nanoparticles up to more than 177 nm beyond 900 °C in a polycrystalline state. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
73.
The thermal conversion of lepidocrocite (γ-FeOOH) into maghemite (γ-Fe2O3)and hematite (α-Fe2O3) has been studied by dynamic (DSC) and static heating experiments. Dynamic heating defines two main regions: conversion of lepidocrocite to maghemite (endothermal signal peaking at 255°C) and conversion of maghemite to hematite (exothermal signal peaking at 450°C). In addition, an exotherm following the lepidocrocite to maghemite endotherm is observed. The maghemite phase appears as porous aggregates of nanocrystals characterized by an extensive spin-canting. We suggest that the additional exotherm is associated with structural changes and a decreasing extent of spin-canting in the maghemite phase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
74.
Photodegradation of sucrose and/or nitrate in aqueous solutions was studied over the titania coated nano-hematite photocatalysts under near-UV irradiation. The efficiency of the photocatalytic oxidation and reduction of these coated particles was compared to the prepared single phase TiO2. It was found that in different environments (O2 or N2) the particles showed differences in the photocatalytic efficiency due to the different reaction mechanisms. Effect of nitrate on sucrose degradation was investigated. In aerobic conditions, sucrose was degraded effectively while nitrate reduction was insignificant due to the fast reoxidation of nitrite by O2 in the dark and by OH. in homogeneous reaction. Since nitrite competes with sucrose for hydroxyl radicals, it has an adverse effect when the aerobic system contains both substrates. Since reoxidation was suppressed in N2 conditions, greater reduction of nitrate was observed. The result showed clearly that in the absence of O2, CO2 production from sucrose mineralisation was limited by the amount of oxygen produced from the nitrate decomposition. Partial photodissolution of Fe ions for the coated samples was also observed in both environments.  相似文献   
75.
76.
采用水泥修饰赤铁矿来提高载氧体的反应活性。实验在1kWth串行流化床上进行,研究了添加水泥对污泥化学链燃烧特性的影响,考察其长期运行的物化性能。结果表明,在实验工况下,赤铁矿添加水泥后,出口的未燃气体浓度明显下降。燃料反应器温度低于870℃时,水泥的添加使污泥的碳转化率和燃烧效率显著升高。在10h长期运行后,一部分污泥灰沉积在载氧体表面。虽然在反应过程中部分的Fe2O3被深度还原,但在长期运行中未出现流化问题和烧结现象。  相似文献   
77.
The element iron plays a crucial role in the study of the evolution of matter from an interstellar cloud to the formation and evolution of the planets. In the Solar System iron is the most abundant metallic element. It occurs in at least three different oxidation states: Fe(0) (metallic iron), Fe(II) and Fe(III). Fe(IV) and Fe(VI) compounds are well known on Earth, and there is a possibility for their occurrence on Mars. In January 2004 the USA space agency NASA landed two rovers on the surface of Mars, both carrying the Mainz Mössbauer spectrometer MIMOS II. They performed for the first time in-situ measurements of the mineralogy of the Martian surface, at two different places on Mars, Meridiani Planum and Gusev crater, respectively, the landing sites of the Mars-Exploration-Rovers (MER) Opportunity and Spirit. After about two Earth years or one Martian year of operation the Mössbauer (MB) spectrometers on both rovers have acquired data from more than 150 targets (and more than thousand MB spectra) at each landing site. The scientific measurement objectives of the Mössbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these iron-bearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe2+, Fe3+, and Fe6+), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the Mössbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels. The Mössbauer spectrometer on Opportunity at Meridiani Planum, identified eight Fe-bearing phases: jarosite (K,Na,H3O)(Fe,Al)(OH)6(SO4)2, hematite, olivine, pyroxene, magnetite, nanophase ferric oxides (npOx), an unassigned ferric phase, and a metallic Fe–Ni alloy (kamacite) in a Fe–Ni-meteorite. Outcrop rocks consist of hematite-rich spherules dispersed throughout S-rich rock that has nearly constant proportions of Fe3+ from jarosite, hematite, and npOx (28%, 35%, and 19% of total Fe). Jarosite is mineralogical evidence for aqueous processes under acid–sulfate conditions because it has structural hydroxide and sulfate and it forms at low pH. Hematite-rich spherules, eroded from the outcrop, and their fragments are concentrated as hematite-rich soils (lag deposits) on ripple crests (up to 68% of total Fe from hematite). Olivine, pyroxene, and magnetite are primarily associated with basaltic soils and are present as thin and locally discontinuous cover over outcrop rocks, commonly forming aeolian bedforms. Basaltic soils are more reduced (Fe3+/Fetotal ~0.2?0.4), with the fine-grained and bright aeolian deposits being the most oxidized. Basaltic soil at Meridiani Planum and Gusev crater have similar Fe-mineralogical compositions. At Gusev crater, the Mössbauer spectrometer on the MER Spirit rover has identified 8 Fe-bearing phases. Two are Fe2+ silicates (olivine and pyroxene), one is a Fe2+ oxide (ilmenite), one is a mixed Fe2+ and Fe3+ oxide (magnetite), two are Fe3+ oxides (hematite and goethite), one is a Fe3+ sulfate (mineralogically not constrained), and one is a Fe3+ alteration product (npOx). The surface material in the plains have a olivine basaltic signature (Morris, et al., Science, 305: 833, 2004; Morris, et al., J. Geophys. Res., 111, 2006, Ming, et al., J. Geophys. Res., 111, 2006) suggesting physical rather than chemical weathering processes present in the plains. The Mössbauer signature for the Columbia Hills surface material is very different ranging from nearly unaltered material to highly altered material. Some of the rocks, in particular a rock named Clovis, contain a significant amount of the Fe oxyhydroxide goethite, α-FeOOH, which is mineralogical evidence for aqueous processes because it is formed only under aqueous conditions.  相似文献   
78.
Two‐dimensional (2D) hematite nanoplate arrays were synthesized directly on fluorine‐doped tin oxide (FTO)‐coated glass by using a facile and novel hydrothermal method. High‐temperature annealing retained the morphology of the nanoplate arrays while simultaneously introducing porosity. The thickness and length of the nanoplates could be tailored by adjusting the precursor composition. Photoelectrochemical (PEC) measurements showed that the photocurrent generated with bare hematite nanoplate photoelectrode under backside illumination was about four times of that under frontside illumination in the entire bias range used, which suggested that slow electron transport was a limiting factor for its PEC performance. Upon Sn doping and Co‐Pi co‐catalyst addition, the photocurrent increased significantly owing to the enhancement of electron conductivity and oxidation kinetics. Electrochemical impedance spectroscopy (EIS) measurements were conducted to understand the surface properties of the nanoplate arrays. Since this strategy is simple, cost‐effective, and highly reproducible, it provides exciting opportunities for the large‐scale growth of porous 2D metal oxide photoelectrodes for a variety of photoelectrochemical and photocatalytic applications.  相似文献   
79.
Nanoparticulate goethite, akaganeite, hematite, ferrihydrite and schwertmannite are important constituents of soils, sediments and mine drainage outflows. These minerals have high sorption capacities for metal and anionic contaminants such as arsenic, chromium, lead, mercury and selenium. Contaminant sequestration is accomplished mainly by surface complexation, but aggregation of particles may encapsulate sorbed surface species into the multigrain interior interfaces, with significant consequences for contaminant dispersal or remediation processes. Particularly for particle sizes on the order of 1–10 nm, the sorption capacity and surface molecular structure also may differ in important ways from bulk material. We review the factors affecting geochemical reactivity of these nanophases, focusing on the ways they may remove toxins from the environment, and include recent results of studies on nanogoethite growth, aggregation and sorption processes.  相似文献   
80.
Hematite, goethite and siderite were found in geological samples using a simple, fast and low cost electroanalytical technique called voltammetry of immobilized microparticles (VMP). A carbon paste electrode was carefully rubbed onto the studied samples (an iron ore and ferrous oolites) to attach some microparticles to the surface of the electrode, and subsequently a potential scan was performed in two aqueous media to obtain the voltammogram which might be considered as the fingerprint of the sample deposited on the electrode. Each peak was related to an electrode process on the electrode whose peak potential indicates the type of iron compound. All the results were confirmed by commonly used analytical techniques to detect the presence of the different phases. All of this makes VMP an analytical tool very useful to save time and reduce analysis costs for geologist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号