首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   5篇
  国内免费   7篇
化学   67篇
力学   12篇
物理学   20篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   7篇
  2013年   9篇
  2012年   13篇
  2011年   4篇
  2010年   3篇
  2009年   11篇
  2008年   6篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1991年   2篇
  1983年   1篇
排序方式: 共有99条查询结果,搜索用时 447 毫秒
71.
The interaction between TNT and a vitally significant biological molecule, epinephrine, was investigated at the level of density functional theory. Two models are constructed; (i) an intimate pair of TNT and epinephrine and (ii) a π complex of them. The calculations (in vacuo conditions) have showed that these molecules in the intimate pair model orient themselves in an angular arrangement, whereas a π complex formation between these molecules is quite likely in the case of parallel arrangement of aromatic rings. The calculated electrostatic charges, UV and NMR spectra support the idea of a strong interaction between TNT and epinephrine whatever the type of interaction is.  相似文献   
72.
Detection of TNT is an important environmental and security concern all over the world. We herein report the performance and comparison of four immunoassays for rapid and label-free detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance (SPR). The immunosensor surface was constructed by immobilization of a home-made 2,4,6-trinitrophenyl–keyhole limpet hemocyanin (TNPh–KLH) conjugate onto an SPR gold surface by simple physical adsorption within 10 min. The immunoreaction of the TNPh–KLH conjugate with four different antibodies, namely, monoclonal anti-TNT antibody (M-TNT Ab), monoclonal anti-trinitrophenol antibody (M-TNP Ab), polyclonal anti-trinitrophenyl antibody (P-TNPh Ab), and polyclonal anti-TNP antibody (P-TNP Ab), was studied by SPR. The principle of indirect competitive immunoreaction was employed for quantification of TNT. Among the four antibodies, the P-TNPh Ab prepared by our group showed highest sensitivity with a detection limit of 0.002 ng/mL (2 ppt) TNT. The lowest detection limits observed with other commercial antibodies were 0.008 ng/mL (8 ppt), 0.25 ng/mL (250 ppt), and 40 ng/mL (ppb) for M-TNT Ab, P-TNP Ab, and M-TNP Ab, respectively, in the similar assay format. The concentration of the conjugate and the antibodies were optimized for use in the immunoassay. The response time for an immunoreaction was 36 s and a single immunocycle could be done within 2 min, including the sensor surface regeneration using pepsin solution. In addition to the quantification of TNT, all immunoassays were evaluated for robustness and cross-reactivity towards several TNT analogs.   相似文献   
73.
In order to better understand the role of binder content, molecular dynamics (MD) simulations were performed to study the interfacial interactions, sensitivity and mechanical properties of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-trinitrotoluene (CL-20/TNT) based polymer-bonded explosives (PBXs) with fluorine rubber F2311. The binding energy between CL-20/TNT co-crystal (1 0 0) surface and F2311, pair correlation function, the maximum bond length of the N–NO2 trigger bond, and the mechanical properties of the PBXs were reported. From the calculated binding energy, it was found that binding energy increases with increasing F2311 content. Additionally, according to the results of pair correlation function, it turns out that H–O hydrogen bonds and H–F hydrogen bonds exist between F2311 molecules and the molecules in CL-20/TNT. The length of trigger bond in CL-20/TNT were adopted as theoretical criterion of sensitivity. The maximum bond length of the N–NO2 trigger bond decreased very significantly when the F2311 content increased from 0 to 9.2%. This indicated increasing F2311 content can reduce sensitivity and improve thermal stability. However, the maximum bond length of the N–NO2 trigger bond remained essentially unchanged when the F2311 content was further increased. Additionally, the calculated mechanical data indicated that with the increase in F2311 content, the rigidity of CL-20/TNT based PBXs was decrease, the toughness was improved.  相似文献   
74.
Nuclear quadrupole resonance (NQR) has a distinct potential to verify the presence of nitrogen bearing substances based on the unequivocal signatures of their spectra. Therefore, this technique is especially suitable for remote detection of illicit substances and explosives. Unfortunately, the inherent signal-to-noise of the most abundant explosive trinitrotoluene (TNT) is very low. Here we present an NQR method with improved sensitivity for estimation of the probability of TNT presence in the investigated object. The method consists of a spin-lock spin-echo (SLSE) multipulse sequence for signal excitation and a time domain matched filter for signal detection. We find that the signal-to-noise increases by shortening the pulse spacings, even though this means a decrease in spectral resolution. In our case, the decrease of the pulse spacings from the typical to resulted in an increase of the signal-to-noise by . A theory describing this enhancement is presented and compared to experimental results on TNT. Issues related to temperature and polymorphism variations are also discussed.  相似文献   
75.
Abstract

There is an increasing need for sensitive/selective determination of explosive traces in soil and post-blast debris for environmental and criminal investigations. A colorimetric sensor was developed to detect and quantify trinitrotoluene (TNT) and tetryl by the use of surfactant-stabilized and dithiocarbamate-functionalized gold nanoparticles (AuNPs). The sensor was manufactured by modifying the nanoparticles with the cationic surfactant cetyl trimethyl ammonium bromide and incorporating diethyldithiocarbamate (DDTC) in the AuNPs synthesis. DDTC firmly bound to AuNPs may show charge-transfer interactions with the —NO2 groups of the analytes, and a color change proportional to analyte concentration accompanied the agglomeration of nanoparticles, at which the absorbances were recorded at 534?nm and 458?nm for TNT and tetryl, respectively. Although the limit of detection was 8?mgL?1 (3.52?×?10?5?molL?1) for TNT and 0.8?mgL?1 (2.78?×?10?6?molL?1) for tetryl, providing moderate sensitivity, the cost was greatly reduced compared to those of other thiol-functionalized AuNPs sensors. Possible interferences of other energetic substances in synthetic mixtures, of camouflage materials used in passenger belongings (e.g., detergent, sugar, caffeine, and paracetamol) and common soil ions were also examined. The method was statistically validated against a reference gas chromatography/mass spectrometry method. This sensor may pave the way for the manufacture of novel low-cost nitroaromatic explosive sensors made of DDTC-based pesticides.  相似文献   
76.
Wang J  Lu F  Macdonald D  Lu J  Ozsoz ME  Rogers KR 《Talanta》1998,46(6):1405-1412
Screen-printed carbon electrodes have been developed as disposable voltammetric sensors for 2,4,6-trinitrotoluene (TNT). Thick-film electrodes based on various conventional and modified inks have been compared for this task. The operation is based on placing the selected thick-film carbon sensor in the non-deaerated/quiescent sample and using a fast (<1 s) and sensitive square-wave voltammetric scan. Different experimental variables have been optimized to yield a detection limit of 200 ppb TNT and a wide linear range. The high selectivity, demonstrated in assays of various untreated environmental samples, is attributed to the facts that the reducible nitro group is rare in nature and that most electroactive organic compounds require higher potentials. The new single-use sensor strips should facilitate the on-site environmental screening of TNT.  相似文献   
77.
Contaminated land and groundwater remediation in military waste dumping sites often necessitates the use of simple, cost-effective and rapid tests for detecting trinitrotoluene (TNT) and trinitrophenol (picric acid; PA) residues in the field along with their dinitro-analogues. Using PA as the model compound, a simple and field-adaptable (on-site) colorimetric method was developed for quantifying PA in the presence of dinitrophenol (DNP) and mononitrophenol (NP). Most commercialized methods for TNT assay—with the exception of CRREL method—use proprietary chemicals, and the color stability and intensity are highly dependent on the composition of the organic solution comprised of acetone or methanol. The developed colorimetric method here is based on the extraction of the Meisenheimer anion formed from the reaction of PA and aqueous NaOH into isobutyl methyl ketone (IBMK) with a cationic surfactant such as cetylpyridinium bromide (CPB). The orange-red color that developed in the organic phase was persistent for at least 30 min. TNT formed a similar extractable red complex under these conditions. If present, 2,4-dinitrophenol (DNP) and 4-nitrophenol (NP) could be detected by the same method at 17- and 167-fold concentrations of the LOD of PA, i.e. 1.5 ppm. DNP alone could be quantified by another charge-transfer (CT) agent, imidazole, as a yellow product at 400 nm in 98% EtOH solution. Under the same conditions, the intramolecular CT-band due to PA was essentially not intensified upon addition of the imidazole ligand, enabling the estimation of the DNP concentration from absorbance difference of solutions with and without imidazole, due to the intermolecular CT absorption of the latter. NP alone could be detected with a diphenylamine solution in H2SO4 to produce a blue color.  相似文献   
78.
A simple, fast, reliable, sensitive and potentially portable explosive detection device was developed employing laser photofragmentation (PF) followed by heterogeneous chemiluminescence (CL) detection. The PF process involves the release of NOx(x = 1,2) moieties from explosive compounds such as TNT, RDX, and PETN through a stepwise excitation–dissociation process using a 193 nm ArF laser. The NOx(x = 1,2) produced upon PF is subsequently detected by its CL reaction with basic luminol solution. The intensity of the CL signal was detected by a thermoelectrically cooled photomultiplier tube with high quantum efficiency and negligible dark current counts. The system was able to detect trace amounts of explosives in various forms in real time under ambient conditions. Detection limits of 3 ppbv for PETN, 2 ppbv for RDX, and 34 ppbv for TNT were obtained. It was also demonstrated that the presence of PETN residue within the range of 61 to 186 ng/cm2 can be detected at a given signal-to-background ratio of 10 using a few microjoules of laser energy. The technique also demonstrated its potential for the direct analysis of trace explosive in soil. An LOD range of 0.5–4.3 ppm for PETN was established, which is comparable to currently available techniques. Figure Photofragmentation–chemiluminescence detector  相似文献   
79.
A Pt/TiO2 photocatalyst was used in the photocatalytic degradation of 2,4,6-trinitrotoluene (TNT) under the irradiation of the simulated sunlight. The results show that the destruction of TNT is faster and more complete with the photocatalyst. The photocatalytic degradation of TNT follows first order kinet-ics. The transformation of nitryl groups of TNT molecules into nitrite and nitrate ions may be acceler-ated in the presence of the Pt/TiO2 photocatalyst. Compared with that without the catalyst, the concentration of nitrate ions was improved 32.3 times within 2.5 h.  相似文献   
80.
Laboratory-scale experiments with gram-range explosive charges are presented. Optical shadowgraphy and high-speed digital imaging are used to measure the explosive-driven shock-wave position as a function of time. From this, shock Mach number-versus-distance from the explosion center can be found. These data then yield the peak overpressure and duration, which are the key parameters in determining the potential damage from an explosion as well as the TNT equivalent of the explosive. Piezoelectric pressure gage measurements of overpressure duration at various distances from the explosive charges compare well with theoretical calculations. A scaling analysis yields an approach to relate the gram-range blast to a large-scale blast from the same or different explosives. This approach is particularly suited to determining the properties and behavior of exotic explosives like triacetone triperoxide (TATP). Results agree with previous observations that the concept of a single TNT equivalence value is inadequate to fully describe an explosive yield, rather TNT equivalence factor and overpressure duration should be presented as functions of radius.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号