首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1207篇
  免费   153篇
  国内免费   64篇
化学   1015篇
晶体学   14篇
力学   40篇
综合类   2篇
数学   97篇
物理学   256篇
  2023年   17篇
  2022年   12篇
  2021年   32篇
  2020年   57篇
  2019年   52篇
  2018年   25篇
  2017年   16篇
  2016年   45篇
  2015年   51篇
  2014年   55篇
  2013年   79篇
  2012年   108篇
  2011年   120篇
  2010年   78篇
  2009年   52篇
  2008年   75篇
  2007年   49篇
  2006年   87篇
  2005年   62篇
  2004年   41篇
  2003年   46篇
  2002年   44篇
  2001年   28篇
  2000年   26篇
  1999年   31篇
  1998年   12篇
  1997年   13篇
  1996年   11篇
  1995年   14篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   20篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   4篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1424条查询结果,搜索用时 31 毫秒
71.
Dependence of the backbone planarity of oligo(p‐phenyleneethynylene)s (OPEs) on the intrinsic electronic character of substituents and on the nature of the solvent has been experimentally demonstrated with a series of center‐symmetrical five‐ring systems, pentiptycene‐pentiptycene‐arene‐pentiptycene‐pentiptycene, differing in the substituents on the central arene. In frozen 2‐methyltetrahydrofuran (MTHF), the adjacent pentiptycene units prefer to be in a mutually twisted orientation when the substituents are electron‐withdrawing (F and amido), resulting in a TPPT or TTTT conformation, whereas a planarized PPPP backbone is favored in the case of electron‐donating substituents (alkyl and alkoxy). The propensity to adopt the PPPP form is generally enhanced by replacing MTHF with either methylcyclohexane or mixed ethanol/methanol as solvent. These observations reveal that the twist between adjacent pentiptycene units in OPEs is a consequence of the electronic rather than steric effects of iptycenyl substituents. The electronic effect of iptycenyl substituents is manifested in decreased phenylene π polarizability as the net effect of both electron‐donating hyperconjugation and an electron‐withdrawing inductive effect. Variable‐temperature electronic absorption and emission spectroscopies are the critical tools for this work. Our findings provide important guidelines for conformational and electronic engineering of OPEs and for the design of novel iptycene‐based organic electronic materials.  相似文献   
72.
73.
The light-driven crawling of a molecular crystal that can form three phases, (α, β, and γ) is presented. Laser irradiation of the molecular crystal can generate phase-dependent transient elastic lattice deformation. The resulting elastic lattice deformation that follows scanning irradiation of a laser can actuate the different phases of molecular crystal to move with different velocity and direction. Because the γ phase has a large Young's modulus (ca. 26 GPa), a force of 0.1 μN can be generated under one laser spot. The generated force is sufficient to actuate the γ-formed molecular crystals in a wide dimensional range to move longitudinally at a velocity of about 60 μm min−1, which is two orders of magnitude faster than the α and β phases.  相似文献   
74.
Structurally robust tetradentate gold(III)-emitters have potent material applications but are rare and unprecedented for those displaying thermally activated delayed fluorescence (TADF). Herein, a novel synthetic route leading to the preparation of highly emissive, charge-neutral tetradentate [C^C^N^C] gold(III) complexes with 5-5-6-membered chelate rings has been developed through microwave-assisted C−H bond activation. These complexes show high thermal stability and with emission origin (3IL, 3ILCT, and TADF) tuned by varying the substituents of the C^C^N^C ligand. With phenoxazine/diphenylamine substituent, we prepared the first tetradentate gold(III) complexes that are TADF emitters with emission quantum yields of up to 94 % and emission lifetimes of down to 0.62 μs in deoxygenated toluene. These tetradentate AuIII TADF emitters showed good performance in vacuum-deposited OLEDs with maximum EQEs of up to 25 % and LT95 of up to 5280 h at 100 cd m−2.  相似文献   
75.
Materials exhibiting excitation wavelength‐dependent photoluminescence (Ex‐De PL) in the visible region have potential applications in bioimaging, optoelectronics and anti‐counterfeiting. Two multifunctional, chiral [Au(NHC)2][Au(CN)2] (NHC=(4R,5R)/(4S,5S)‐1,3‐dimethyl‐4,5‐diphenyl‐4,5‐dihydro‐imidazolin‐2‐ylidene) complex double salts display Ex‐De circularly polarized luminescence (CPL) in doped polymer films and in ground powder. Emission maxima can be dynamically tuned from 440 to 530 nm by changing the excitation wavelength. The continuously tunable photoluminescence is proposed to originate from multiple emissive excited states as a result of the existence of varied AuI???AuI distances in ground state. The steric properties of the NHC ligand are crucial to the tuning of AuI???AuI distances. An anti‐counterfeiting application using these two salts is demonstrated.  相似文献   
76.
Reliable methods for enantioselective cis‐dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis‐α‐[FeII(2‐Me2‐BQPN)(OTf)2], which bears a tetradentate N4 ligand (Me2‐BQPN=(R,R)‐N,N′‐dimethyl‐N,N′‐bis(2‐methylquinolin‐8‐yl)‐1,2‐diphenylethane‐1,2‐diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron‐deficient alkenes were efficiently oxidized to chiral cis‐diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2O2) as oxidant under mild conditions. Experimental studies (including 18O‐labeling, ESI‐MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis‐FeV(O)2 reaction intermediate as an active oxidant. This cis‐[FeII(chiral N4 ligand)]2+/H2O2 method could be a viable green alternative/complement to the existing OsO4‐based methods for asymmetric alkene dihydroxylation reactions.  相似文献   
77.
Weak van der Waals interactions between interlayers of two‐dimensional layered materials result in disabled across‐interlayer electron transfer and poor layered structural stability, seriously deteriorating their performance in energy applications. Herein, we propose a novel covalent assembly strategy for MoS2 nanosheets to realize unique MoS2/SnS hollow superassemblies (HSs) by using SnS nanodots as covalent linkages. The covalent assembly based on all‐inorganic and carbon‐free concept enables effective across‐interlayer electron transfer, facilitated ion diffusion kinetics, and outstanding mechanical stability, which are evidenced by experimental characterization, DFT calculations, and mechanical simulations. Consequently, the MoS2/SnS HSs exhibit superb rate performance and long cycling stability in lithium‐ion batteries, representing the best comprehensive performance in carbon‐free MoS2‐based anodes to date. Moreover, the MoS2/SnS HSs also show excellent sodium storage performance in sodium‐ion batteries.  相似文献   
78.
A surface‐enhanced Raman scattering‐chiral anisotropy (SERS‐ChA) effect is reported that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films (CNAFs) equipped in the normal Raman scattering Spectrometer. The CNAFs provided remarkably higher enhancement factors of Raman scattering (EFs) for particular enantiomers, and the SERS intensity was proportional to the enantiomeric excesses (ee) values. Except for molecules with mesomeric species, all of the tested enantiomers exhibited high SERS‐ChA asymmetry factors (g), ranging between 1.34 and 1.99 regardless of polarities, sizes, chromophores, concentrations and ee. The effect might be attributed to selective resonance coupling between the induced electric and magnetic dipoles associated with enantiomers and chiral plasmonic modes of CNAFs.  相似文献   
79.
A transition‐metal‐free C(sp2)?C(sp2) bond formation reaction by the cross‐coupling of diazo quinones with catechol boronic esters was developed. With this protocol, a variety of biaryls and alkenyl phenols were obtained in good to high yields under mild conditions. The reaction tolerates various functionalities and is applicable to the derivatization of pharmaceuticals and natural products. The synthetic utility of the method was demonstrated by the short synthesis of multi‐substituted triphenylenes and three bioactive natural products, honokiol, moracin M, and stemofuran A. Mechanistic studies and density functional theory (DFT) calculations revealed that the reaction involves attack of the boronic ester by a singlet quinone carbene followed by a 1,2‐rearrangement through a stepwise mechanism.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号