首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   11篇
化学   131篇
力学   5篇
数学   22篇
物理学   41篇
  2022年   4篇
  2021年   2篇
  2020年   7篇
  2019年   5篇
  2018年   11篇
  2017年   5篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   17篇
  2012年   16篇
  2011年   11篇
  2010年   8篇
  2009年   9篇
  2008年   11篇
  2007年   11篇
  2006年   11篇
  2005年   15篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   8篇
  1996年   2篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
71.
Octakis[3‐(3‐aminopropyltriethoxysilane)propyl]octasilsesquioxane (APTPOSS) as a polyhedral oligomeric silsesquioxane derivative was prepared and used as a pioneer reagent to obtain a novel core–shell composite using magnetic iron oxide nanoparticles as the core and the inorganic–organic hybrid polyhedral oligomeric silsesquioxane as the shell. Fe3O4@SiO2/APTPOSS were confirmed using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, dynamic light scattering, thermogravimetric analysis, X‐ray diffraction and vibrating sample magnetometry. The inorganic–organic hybrid polyhedral oligomeric silsesquioxane magnetic nanoparticles were used as an efficient new heterogeneous catalyst for the one‐pot three‐component synthesis of 1,3‐thiazolidin‐4‐ones under solvent‐free conditions. Moreover, these nanoparticles could be easily separated using an external magnet and then reused several times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
72.
A mononuclear dioxo vanadium(V) complex of a hydrazone ONO donor ligand, [VVO2(L1)] (1), was synthesized by the reaction of V2O5 and terephthalic acid with H2L1 in 1:1:1 mol ratio, while an oxo-bridged bis(vanadium(IV)oxo) complex, [μ 2–O–{VIVO(L2)}2] (2), was synthesized by the treatment of isonicotinic acid hydrazide, salicylaldehyde and CoSO4·7H2O with bis(acetylacetonato)oxovanadium(IV) (H2L1 = isonicotinic acid(2-hydroxy-benzylidene)-hydrazide, H2L2 = isonicotinic acid (1-methyl-3-oxo-butylidene)-hydrazide). The complexes were characterized by elemental analyses and spectroscopic methods. The crystal structure of complex 2 was determined by X-ray analysis. The complexes were tested as catalysts for the oxidation of cycloalkenes and benzyl alcohol using H2O2 as terminal oxidant. Excellent selectivity was achieved in the oxidation of cyclohexene.  相似文献   
73.
Storage and transportation of natural gas as gas hydrate (“gas-to-solids technology”) is a promising alternative to the established liquefied natural gas (LNG) or compressed natural gas (CNG) technologies. Gas hydrates offer a relatively high gas storage capacity and mild temperature and pressure conditions for formation. Simulations based on the van der Waals–Platteeuw model and molecular dynamics (MD) are employed in this study to relate the methane gas content/occupancy in different hydrate systems with the hydrate stability conditions including temperature, pressure, and secondary clathrate stabilizing guests. Methane is chosen as a model system for natural gas. It was found that the addition of about 1% propane suffices to increase the structure II (sII) methane hydrate stability without excessively compromising methane storage capacity in hydrate. When tetrahydrofuran (THF) is used as the stabilizing agent in sII hydrate at concentration between 1% and 3%, a reasonably high methane content in hydrate can be maintained (∼85–100, v/v) without dealing with pressures more than 5 MPa and close to room temperature.  相似文献   
74.
Classical molecular dynamics simulations were used to study low-density beta(0)-phase p-tert-butylcalix[4]arene inclusion compounds with multiple calix occupancies of xenon, carbon dioxide, methane, and hydrogen guest molecules with guest-host ratios ranging from 1:4 to 4:1. Custom parameterized force fields were used for the guests and the AMBER force field for the calixarene units was validated in our previous work (Chem. Eur. J. 2006, 12, 5231). The inclusion energy and unit cell volume of the calixarene inclusion compound were determined for various guest occupancies and for occupancies greater than 1:1, strong guest-guest interaction effects are observed. The structure and energetics of the 2:1 CO(2)/beta(0)-phase inclusion compound were compared to those of the low-temperature 2:1 CO(2)/calixarene in which the guest molecules occupy both cage and interstitial sites.  相似文献   
75.
Nonspherical cages in inclusion compounds can result in non‐uniform motion of guest species in these cages and anisotropic lineshapes in NMR spectra of the guest. Herein, we develop a methodology to calculate lineshape anisotropy of guest species in cages based on molecular dynamics simulations of the inclusion compound. The methodology is valid for guest atoms with spin 1/2 nuclei and does not depend on the temperature and type of inclusion compound or guest species studied. As an example, the nonspherical shape of the structure I (sI) clathrate hydrate large cages leads to preferential alignment of linear CO2 molecules in directions parallel to the two hexagonal faces of the cages. The angular distribution of the CO2 guests in terms of a polar angle θ and azimuth angle ? and small amplitude vibrational motions in the large cage are characterized by molecular dynamics simulations at different temperatures in the stability range of the CO2 sI clathrate. The experimental 13C NMR lineshapes of CO2 guests in the large cages show a reversal of the skew between the low temperature (77 K) and the high temperature (238 K) limits of the stability of the clathrate. We determine the angular distributions of the guests in the cages by classical MD simulations of the sI clathrate and calculate the 13C NMR lineshapes over a range of temperatures. Good agreement between experimental lineshapes and calculated lineshapes is obtained. No assumptions regarding the nature of the guest motions in the cages are required.  相似文献   
76.
(1)H magic-angle spinning (MAS) NMR spectra of p-tert-butylcalix[4]arene inclusion compounds with toluene and pyridine show large complexation-induced shifts of the guest proton resonances arising from additional magnetic shielding caused by the aromatic rings of the cavities of the host calixarene lattice. In combination with ab initio calculations, these observations can be employed for NMR crystallography of host-guest complexes, providing important spatial information about the location of the guest molecules in the host cavities.  相似文献   
77.
Methane storage in structure H (sH) clathrate hydrates is attractive due to the relatively higher stability of sH as compared to structure I methane hydrate. The additional stability is gained without losing a significant amount of gas storage density as happens in the case of structure II (sII) methane clathrate. Our previous work has showed that the selection of a specific large molecule guest substance (LMGS) as the sH hydrate former is critical in obtaining the optimum conditions for crystallization kinetics, hydrate stability, and methane content. In this work, molecular dynamics simulations are employed to provide further insight regarding the dependence of methane occupancy on the type of the LMGS and pressure. Moreover, the preference of methane molecules to occupy the small (5(12)) or medium (4(3)5(6)6(3)) cages and the minimum cage occupancy required to maintain sH clathrate mechanical stability are examined. We found that thermodynamically, methane occupancy depends on pressure but not on the nature of the LMGS. The experimentally observed differences in methane occupancy for different LMGS may be attributed to the differences in crystallization kinetics and/or the nonequilibrium conditions during the formation. It is also predicted that full methane occupancies in both small and medium clathrate cages are preferred at higher pressures but these cages are not fully occupied at lower pressures. It was found that both small and medium cages are equally favored for occupancy by methane guests and at the same methane content, the system suffers a free energy penalty if only one type of cage is occupied. The simulations confirm the instability of the hydrate when the small and medium cages are empty. Hydrate decomposition was observed when less than 40% of the small and medium cages are occupied.  相似文献   
78.
Molecular dynamics simulations are used to study the stability of structure II H(2) and D(2) clathrates with different large and small guest occupancies at 160 and 250 K and 2.0 kbars. Simulations are performed with the recently proposed anisotropic site-site potentials of Wang for H2 and D2 [J. Quant. Spectrosc. Radiat. Transf. 76, 23 (2003)] which are parameterized to account for quantum corrections of order variant Planck's over 2pi(2) in the second virial coefficient. Occupancies of 0-2 in the small cages and 2-5 in the large cages are considered. Thermodynamic integration is used to determine the most stable guest occupancy at each temperature. Since lattice free energy and configurational energy differences are small for a number of different combinations of cage occupancies, one must expect that in bulk samples various combinations will indeed be observed. Special attention is given to the differences between H(2) and D(2) guests and implications on the hydrogen storage capacity of the clathrates are discussed.  相似文献   
79.
The stability of structure H (sH) carbon dioxide clathrate hydrates at three temperature-pressure conditions are determined by molecular dynamics simulations on a 3x3x3 sH unit cell replica. Simulations are performed at 100 K at ambient pressure, 273 K at 100 bars and also 300 K and 5.0 kbars. The small and medium cages of the sH unit cell are occupied by a single carbon dioxide guest and large cage guest occupancies of 1-5 are considered. Radial distribution functions are given for guests in the large cages and unit cell volumes and configurational energies are studied as a function of large cage CO(2) occupancy. Free energy calculations are carried out to determine the stability of clathrates for large cage occupancies at three temperature/pressure conditions stated above. At the low temperature, large cage occupancy of 5 is the most stable while at the higher temperature, the occupancy of 3 is the most favored. Calculations are also performed to show that the CO(2) sH clathrate is more stable than the methane clathrate analog. Implications on CO(2) sequestration by clathrate formation are discussed.  相似文献   
80.
The main aim of this article is to study quantitative structure of small Ree Groups 2G2(q). Here, we prove that small Ree groups are uniquely determined by their orders and the set of the number of elements of the same order.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号