首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6340篇
  免费   868篇
  国内免费   3037篇
化学   5607篇
晶体学   91篇
力学   503篇
综合类   263篇
数学   1670篇
物理学   2111篇
  2024年   41篇
  2023年   163篇
  2022年   191篇
  2021年   179篇
  2020年   142篇
  2019年   189篇
  2018年   128篇
  2017年   202篇
  2016年   258篇
  2015年   271篇
  2014年   556篇
  2013年   366篇
  2012年   468篇
  2011年   445篇
  2010年   446篇
  2009年   371篇
  2008年   525篇
  2007年   413篇
  2006年   382篇
  2005年   433篇
  2004年   475篇
  2003年   366篇
  2002年   380篇
  2001年   343篇
  2000年   285篇
  1999年   240篇
  1998年   255篇
  1997年   227篇
  1996年   207篇
  1995年   233篇
  1994年   184篇
  1993年   173篇
  1992年   130篇
  1991年   145篇
  1990年   129篇
  1989年   136篇
  1988年   61篇
  1987年   27篇
  1986年   20篇
  1985年   17篇
  1984年   20篇
  1983年   17篇
  1982年   4篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
采用水热方法,选用含2个氰基的醚氧桥联羧酸配体(Hdbna)和2,2′-联吡啶(2,2′-bipy)与MnCl2·4H2O反应,合成了一个二维配位聚合物[Mn(μ3-Hdpna)(2,2′-bipy)]n (1),并对其结构和催化性质进行了研究。在配合物1中,配体Hdbna在水热反应条件下,通过原位反应被转化成醚氧桥联三羧酸配体(H3dpna)。结构分析结果表明配合物1的晶体属于三斜晶系,P■空间群。配合物1具有二维层结构。研究表明,配合物1在硅腈化反应中表现出较高的催化活性。  相似文献   
62.
以脯氨酸(Pro)为保护剂,盐酸羟胺为还原剂,通过一步化学还原法制备脯氨酸稳定的铜纳米团簇(Cu NCs)。采用分子荧光仪和紫外可见吸收仪对Cu NCs的光学性质进行分析,通过透射电子显微镜(TEM)、X射线光电子能谱(XPS)和傅里叶变换红外波谱仪(FTIR)对Cu NCs的结构进行表征。TEM图像显示Cu NCs的形貌为球状,平均直径为1.89 nm。Cu NCs溶液在紫外光下呈蓝色,最大激发和发射波长分别为397和458 nm。Cu NCs的荧光可以选择性地被三硝基苯酚(PA)猝灭。该探针对PA的线性响应范围为0.5~15μmol/L和20~70μmol/L,检测限为0.092μmol/L(S/N=3)。可能的检测机理是静态猝灭和内滤效应。此外,该荧光探针已成功应用于实际水样品中PA的测定。  相似文献   
63.
谢君瑶  曾小明  罗美明 《化学学报》2021,79(9):1118-1122
三组分双官能化反应是一种高效、简便构建C―C键、C―X键的方式. 双键广泛存在于众多有机化合物中, 对双键的双官能化反应研究有巨大的应用潜力. 本工作以Ni(COD)2为催化剂, 以芳基溴化镁、芳基溴化物为芳基化试剂, 实现了3-芳基-2-丙烯醛亚胺中碳碳双键的双芳基化反应. 该反应建立了一个新的镍催化α,β-不饱和醛的α,β-双芳基化方法, 可以高度区域选择性地向底物分子中引入两个不同取代的芳环, 得到多种2,3,3-三芳基丙醛骨架的产物. 利用这一反应作为核心步骤实现了天然产物Quebecol的简便合成. 机理研究表明, 该反应可能经历了亲核加成、金属交换、还原消除的历程.  相似文献   
64.
胡家栋  文雯  陈乐  方晓武 《化学通报》2021,84(3):279-283
本文开发了一种天然产物2-羟基-3,4,6-三甲氧基查尔酮(1)的十克级规模快速合成方法。通过改良合成2-羟基-3,4,6-三甲氧基苯甲醛(7)的甲基化和甲酰化条件,将7的合成总收率从文献报道的22%提高至68%。并以7为原料在乙腈为溶剂、80℃加热的条件下通过Wittig反应在50mmol规模以85%的收率合成了产物1。  相似文献   
65.
《分析试验室》2021,40(7):818-822
制作了一个三电极电致膜抑制器,考察了加电方式、串连电阻阻值、电极间距对改善噪声的影响。相较于传统两电极抑制器,优化得到的三电极抑制器在抑制CO_3~(2-)-淋洗液时在噪声(~2.5倍)和信噪比(2.5~3.6倍)方面皆有一定程度的改善;所得三电极抑制器稳定性好,可与离子色谱结合后检测饮料中6种常见阴离子含量。  相似文献   
66.
《分析试验室》2021,40(8):875-880
建立了固相萃取-超高效液相色谱-三重四极杆串联质谱(SPE-UPLC-MS/MS)测定水中磺胺类、喹诺酮类及四环素类抗生素的分析方法。考察了滤膜、固相萃取柱、洗脱液种类和体积、pH、上样流速对萃取效果的影响。水样过滤后调节至pH 3,经HLB小柱富集净化后,依次用0.1%(V:V)甲酸甲醇和3%(V:V)氨水甲醇洗脱,采用外标法定量分析。15种目标化合物在1~200μg/L范围内线性关系良好,检出限为0.15~1.04 ng/L;平均回收率在81.2%~116.6%之间,相对标准偏差(RSDs)为0.6%~8.9%。该方法适用于水中15种抗生素残留检测。  相似文献   
67.
《分析试验室》2021,40(4):416-421
建立了小麦粉及其添加剂中非食用物质三聚硫氰酸三钠盐(TMT)的高效液相色谱检测方法。优化了缓冲盐提取体系对TMT的提取,比较了不同色谱条件对TMT及杂质的分离效果。样品中TMT用乙腈-甲酸铵缓冲溶液体系提取,以甲醇-酸化乙酸铵为流动相梯度洗脱,Atlantis T3色谱柱进行分离,二极管阵列检测器检测,外标法定量。结果显示,TMT质量浓度在0.05~10.0μg/mL范围内线性关系良好(R~2=0.9997)。方法检出限为0.3 mg/kg,定量限为1.0 mg/kg,加标回收率在90.3%~105.1%之间,相对标准偏差均小于5.1%。通过控制提取条件和色谱分离条件实现了总TMT的测定,克服了酶式面粉处理剂易胶化问题。方法适用于小麦粉及其添加剂中总TMT的快速定性、定量分析。  相似文献   
68.
《有机化学》2015,(3):741
<正>Angew.Chem.Int.Ed.2015,54,638~642三氟甲基(CF3)官能团的引入通常能显著改变母体分子的物理、化学和生物性质,因此含三氟甲基的有机化合物在药物、材料和生物化学等诸多领域被广泛应用.由于自然界中的氟元素绝大多数以无机物的形式存在,如何向有机分子引入三氟甲基便成为一个重要研究命题.目前有机化学家们主要采用直接三氟甲基化法或含三氟甲基的砌块法实现向目标分子中引入三氟甲基.但是这两种方法都必须预先获得含三氟甲基官能团的前体,然后再拼接.中国  相似文献   
69.
以有序介孔三氧化二铟(m-In2O3)和还原氧化石墨烯(RGO)为原料,采用紫外光照射法合成了介孔三氧化二铟/还原氧化石墨烯(m-In2O3-RGO)复合光催化剂.利用N2吸附-脱附、X射线衍射(XRD)、透射电子显微镜(TEM)、漫反射吸收光谱(DRS)和光电流测试等手段对样品进行表征.在可见光照射下,以对氯苯酚(4-CP)为目标污染物,考察了m-In2O3-RGO光催化剂的催化性能.结果表明,m-In2O3-RGO光催化剂具有完整的晶型和规则的孔道结构,有利于光生电子和空穴的分离.同时,作为固态电子受体与传输体的RGO促进了光生电子-空穴对的传输和分离,有效提高了可见光催化性能.掺杂2%(质量分数)RGO的复合光催化剂性能最佳,4 h可将4-CP降解96%以上,催化剂经多次循环使用后,其光催化活性基本保持不变.  相似文献   
70.
采用稀土三元催化剂制备了二氧化碳-环氧丙烷-马来酸酐三元共聚物(PPCMA).用红外和核磁谱图确定了PPCMA的结构及马来酸酐单元的含量,3 wt%马来酸酐投料量的PPCMA(共聚物中马来酸酐单元含量4.1%)的玻璃化转变温度(Tg)和起始热分解温度(Td-5%)分别为13.4℃和217℃,拉伸强度为2.88 MPa,断裂伸长率为1669%,与二氧化碳-环氧丙烷共聚物(PPC)相比,引入少量马来酸酐的PPCMA有望成为一种韧性材料,并可对PPC和聚3-羟基丁酸酯(PHB)共混体系进行改性.当在PPC/PHB共混体系中添加10 wt%的PPCMA时,所得共混材料的拉伸强度为18.2 MPa,断裂伸长率则提高到85%,较没有添加PPCMA的样品提高了4.25倍,因此PPCMA的加入能有效提高PPC/PHB共混体系的韧性,改善PPC/PHB共混体系的力学性能.偏光显微镜的研究表明PPC/PHB共混体系加入PPCMA后,很快形成大量尺寸小的PHB球晶,且结晶速度大幅度提高,因此PPCMA在一定意义上可视为一种特殊的“成核剂”.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号