首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5649篇
  免费   930篇
  国内免费   1292篇
化学   5352篇
晶体学   123篇
力学   352篇
综合类   87篇
数学   206篇
物理学   1751篇
  2024年   6篇
  2023年   99篇
  2022年   177篇
  2021年   388篇
  2020年   327篇
  2019年   273篇
  2018年   228篇
  2017年   314篇
  2016年   379篇
  2015年   346篇
  2014年   442篇
  2013年   636篇
  2012年   445篇
  2011年   479篇
  2010年   308篇
  2009年   416篇
  2008年   414篇
  2007年   345篇
  2006年   296篇
  2005年   264篇
  2004年   228篇
  2003年   176篇
  2002年   138篇
  2001年   97篇
  2000年   77篇
  1999年   77篇
  1998年   71篇
  1997年   64篇
  1996年   38篇
  1995年   38篇
  1994年   30篇
  1993年   52篇
  1992年   42篇
  1991年   25篇
  1990年   16篇
  1989年   20篇
  1988年   26篇
  1987年   12篇
  1986年   10篇
  1985年   15篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1973年   2篇
  1971年   2篇
  1959年   1篇
  1957年   1篇
排序方式: 共有7871条查询结果,搜索用时 31 毫秒
61.
Guanine (G)‐rich oligonucleotides have attracted considerable interest as therapeutic agents. Two G‐rich aptamers were selected against epidermal growth factor receptor (EGFR)‐transfected A549 cells, and their G‐rich domains (S13 and S50) were identified to account for the binding of parental aptamers. Circular dichroism (CD) spectra showed that S13 and S50 bound to their targets by forming parallel quadruplexes. Their binding, internalization, and antiproliferation activity in cancer and noncancer cells were investigated by flow cytometry and 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) assay, and compared with those of nucleolin‐binding AS1411 and thrombin‐binding aptamer. The two truncated aptamers (S13 and S50) have good binding and internalization in cancer cells and noncancer cells; however, only S50, similar to AS1411, shows potent antiproliferation against cancer cells. Our data suggest that tumor‐selective antiproliferation of G‐rich oligonucleotides does not directly depend on the binding of the G‐rich aptamer to cells.  相似文献   
62.
Radix Sophorae flavescentis is generally used for the treatment of different stages of prostate cancer in China. It has ideal effects when combined with surgical treatment and chemotherapy. However, its active components are still ambiguous. We devised a comprehensive two‐dimensional PC‐3 prostate cancer cell membrane chromatography system for screening anti‐prostate cancer components in Radix Sophorae flavescentis . Gefitinib and dexamethasone were chosen as positive and negative drugs respectively for validation and optimization the selectivity and suitability of the comprehensive two‐dimensional chromatographic system. Five compounds, sophocarpine, matrine, oxymatrine, oxysophocarpine, and xanthohumol were found to have significant retention behaviors on the PC‐3 cell membrane chromatography and were unambiguously identified by time‐of‐flight mass spectrometry. Cell proliferation and apoptosis assays confirmed that all five compounds had anti‐prostate cancer effects. Matrine and xanthohumol had good inhibitory effects, with half maximal inhibitory concentration values of 0.893 and 0.137 mg/mL, respectively. Our comprehensive two‐dimensional PC‐3 prostate cancer cell membrane chromatographic system promotes the efficient recognition and rapid analysis of drug candidates, and it will be practical for the discovery of prostate cancer drugs from complex traditional Chinese medicines.  相似文献   
63.
The high affinity of GLUT5 transporter for d ‐fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d ‐fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery potential of PEI for genetic material. The four‐step synthesis of a thiol‐group bearing d ‐fructose enables the decoration of a cationic polymer backbone with d ‐fructose via thiol‐ene photoaddition. The functionalization of LPEI is confirmed by 2D NMR techniques, elemental analysis, and size exclusion chromatography. Importantly, a d ‐fructose decoration of 16% renders the polymers water‐soluble and eliminates the cytotoxicity of PEI in noncancer L929 cells, accompanied by a reduced unspecific cellular uptake of the genetic material. In contrast, the cytotoxicity as well as the cell specific uptake is increased for triple negative MDA‐MB‐231 breast cancer cells. Therefore, the introduction of d ‐fructose shows superior potential for cell targeting, which can be assumed to be GLUT5 dependent.

  相似文献   

64.
The authors report on series of side‐chain smectic liquid crystal elastomer (LCE) cell scaffolds based on star block‐copolymers featuring 3‐arm, 4‐arm, and 6‐arm central nodes. A particular focus of these studies is placed on the mechanical properties of these LCEs and their impact on cell response. The introduction of diverse central nodes allows to alter and custom‐modify the mechanical properties of LCE scaffolds to values on the same order of magnitude of various tissues of interest. In addition, it is continued to vary the position of the LC pendant group. The central node and the position of cholesterol pendants in the backbone of ε‐CL blocks (alpha and gamma series) affect the mechanical properties as well as cell proliferation and particularly cell alignment. Cell directionality tests are presented demonstrating that several LCE scaffolds show cell attachment, proliferation, narrow orientational dispersion of cells, and highly anisotropic cell growth on the as‐synthesized LCE materials.

  相似文献   

65.
In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom‐up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N‐isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm–PDMS substrates optimal for VSMC attachment. To allow long‐term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm–PDMS surfaces were further modified with 3‐aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single‐layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single‐layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue.

  相似文献   

66.
Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes, which are known to suppress protein adsorption and prevent cell attachment, are reported here to possess interesting and tunable thermoresponsive behavior, if the brush thickness is reduced or the grafting density is altered. PDEGMA brushes with a dry ellipsometric thickness of 5 ± 1 nm can be switched from cell adherent behavior at 37 °C to cell nonadherent at 25 °C. This behavior coincides with the temperature‐dependent irreversible adsorption of fibronectin from phosphate saline buffer and proteins present in the cell culture medium, as unveiled by surface plasmon resonance measurements. Unlike for tissue culture polystyrene reference surfaces, swelling of the PDEGMA chains below the lower critical solution temperature results in the absence of paxillin and actin containing cellular filaments responsible for cell attachment. These tunable properties of very thin homopolymer PDEGMA brushes render this system interesting as an alternative thermoresponsive layer for continuous cell culture or enzyme‐free cell culture systems.

  相似文献   

67.
Stem cell transplantations for spinal cord injury (SCI) have been studied extensively for the past decade in order to replace the damaged tissue with human pluripotent stem cell (hPSC)‐derived neural cells. Transplanted cells may, however, benefit from supporting and guiding structures or scaffolds in order to remain viable and integrate into the host tissue. Biomaterials can be used as supporting scaffolds, as they mimic the characteristics of the natural cellular environment. In this study, hPSC‐derived neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) are cultured on aligned poly(ε‐caprolactone) nanofiber platforms, which guide cell orientation to resemble that of spinal cord in vivo. All cell types are shown to efficiently spread over the nanofiber platform and orient according to the fiber alignment. Human neurons and astrocytes require extracellular matrix molecule coating for the nanofibers, but OPCs grow on nanofibers without additional treatment. Furthermore, the nanofiber platform is combined with a 3D hydrogel scaffold with controlled thickness, and nanofiber‐mediated orientation of hPSC‐derived neurons is also demonstrated in a 3D environment. In this work, clinically relevant materials and substrates for nanofibers, fiber coatings, and hydrogel scaffolds are used and combined with cells suitable for developing functional cell grafts for SCI repair.

  相似文献   

68.
BaGa2O4 and Ba3Co2O6(CO3)0.6 compounds were studied as electrolyte and cathode materials for Proton Ceramic Fuel Cells (PCFC), respectively. Not only BaGa2O4 rapidly reacts with atmospheric H2O and CO2 and leads to a progressive material decomposition, but it does not present real hydration properties in normal conditions of pressure. On the other hand, the basic cobalt oxocarbonate Ba3Co2O6(CO3)0.6 exhibits an interesting tendency for weight uptake and formation of hydrogencarbonate groups in moist heating/cooling conditions. This material was therefore considered for complementary studies in order to confirm its potential use as mixed proton-electron conductor, taking into account the ordered intergrowth of carbonates and face sharing Co-octahedra columns forming a pseudo-one-dimensional structure. Some preliminary results concerning electrochemical properties of the barium cobalt oxocarbonate as a PCFC cathode are also described and show at the moment modest performance, possibly related to a hydrated/carbonated surface layer contribution and/or the lack of electron percolation within the electrode layer.  相似文献   
69.
Microfibers have received much attention due to their promise for creating flexible and highly relevant tissue models for use in biomedical applications such as 3D cell culture, tissue modeling, and clinical treatments. A generated tissue or implanted material should mimic the natural microenvironment in terms of structural and mechanical properties as well as cell adhesion, differentiation, and growth rate. Therefore, the mechanical and biological properties of the fibers are of importance. This paper briefly introduces common fiber fabrication approaches, provides examples of polymers used in biomedical applications, and then reviews the methods applied to modify the mechanical and biological properties of fibers fabricated using different approaches for creating a highly controlled microenvironment for cell culturing. It is shown that microfibers are a highly tunable and versatile tool with great promise for creating 3D cell cultures with specific properties.  相似文献   
70.
《Mendeleev Communications》2023,33(2):201-202
A new polyfunctional ligand of the thiadiazole family was synthesized. Cytotoxic properties with respect to leukemic cell lines, radiation stability, predicted permeability through the blood–brain barrier and cardiotoxicity of the new ligand and its precursor were determined. New zinc complexes with N-{2-[5-(3-chloro-4-methylphenylamino)-1,2,4-thiadiazol-3-yl]-1-methylethyl}-N-(2,2,6,6-tetramethylpiperidin-4-yl)-amine as the ligand have been obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号