首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2536篇
  免费   241篇
  国内免费   268篇
化学   1996篇
晶体学   38篇
力学   459篇
综合类   3篇
数学   97篇
物理学   452篇
  2024年   1篇
  2023年   28篇
  2022年   41篇
  2021年   65篇
  2020年   135篇
  2019年   89篇
  2018年   92篇
  2017年   130篇
  2016年   162篇
  2015年   120篇
  2014年   132篇
  2013年   270篇
  2012年   128篇
  2011年   150篇
  2010年   138篇
  2009年   167篇
  2008年   148篇
  2007年   160篇
  2006年   167篇
  2005年   137篇
  2004年   120篇
  2003年   89篇
  2002年   64篇
  2001年   50篇
  2000年   37篇
  1999年   32篇
  1998年   31篇
  1997年   22篇
  1996年   25篇
  1995年   16篇
  1994年   29篇
  1993年   14篇
  1992年   13篇
  1991年   10篇
  1990年   9篇
  1989年   4篇
  1988年   8篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1957年   2篇
排序方式: 共有3045条查询结果,搜索用时 15 毫秒
51.
52.
Hybrid composites are promising materials due the possibility of combining the properties of different fiber types with those of the polymeric matrix. The higher number of phases involved in this kind of material and the hydrostatic component of polymer behavior make it unfeasible to use classic models for failure prediction, like the Von Mises or Treska models. In this study, a modified Arcan's device was applied for mechanical characterization of a polymeric blend matrix composite reinforced with randomly oriented continuous fibers (a clutch disc) to generate combined loading conditions. Experimental results were applied in the Von Mises and Drucker-Prager theoretical models for failure prediction. Additionally, scanning electron microscopy (SEM) was applied to analyze the fracture surface. The failure envelope provided by the Drucker-Prager model fit the experimental results, making it a promising tool for predicting the behavior of this type of hybrid composite.  相似文献   
53.
Shape memory polymers (SMPs) have received great attention and scientific interest in widespread technological development during last few decades. Besides the development of novel SMPs, various techniques have been practiced for characterization of shape memory effect (SME) of SMPs. In this study, the shape memory effect and recovery stress property of the carbon nanotube (CNT)/waterborne epoxy (WEP) nanocomposites below and above the glass transition temperature (Tg) of the nanocomposites and under isostrain and isostress were systematically investigated via thermal mechanical analysis (TMA), respectively. The experimental results showed that the nanocomposites exhibit excellent shape memory effect. The shape memory fixity and recovery ratios were approximately 100% even below glass transition temperature (Tg). A remarkable point is that the strain of the nanocomposites suddenly increased with the temperature decreasing in a certain period of the heating-cooling cycles under isostress condition and the strain increment increased with temperature in general. Especially at low temperature, the recovery stress was very sensitive to temperature under isostrain condition of ±0.25 °C temperature with differential of 25.5 °C developed pressure difference of 0.20 MPa. Moreover, TMA is a practical method for quantifying the SME and recovery stress properties of SMPs and their composites.  相似文献   
54.
This paper presents a new hybrid laser-cutting method for producing fracture test specimens from thermosetting materials. The hybrid approach combines casting of a sheet of material with subsequent laser-cutting of the test specimens. The new approach was compared to the traditional casting method using a fracture toughness test. For this study, a compact version of the tapered double cantilever beam (cTDCB) was used as a specimen geometry for both manufacturing methods. The cTDCB specimen is crack length independent, and crack length investigations were performed to ensure the crack length independence of the cTDCB specimens. The specimens that were made by the hybrid laser-cut method were found to be comparable to the specimens obtained by the traditional casting method. Moreover, the laser-cut method provides a fast and accurate method to make a significant number of samples in a reasonable time. These tests show that the hybrid laser-cut method could be a good alternative to the traditional casting method.  相似文献   
55.
The aim of this work is to improve the performance of natural rubber reinforced with a hybrid of pineapple leaf fiber with carbon black. When there are multiple components to be mixed into a rubber matrix, mixing can be carried out in more than one way. Thus, in this study, the effects of preparation method and the resulting carbon black distribution on the mechanical properties of the hybrid composite were evaluated. Pineapple leaf fiber (PALF) and carbon black contents were fixed at 10 parts (by weight) and 30 parts (by weight) per hundred parts of rubber (phr), respectively. In order to improve the dispersion, PALF with rubber was prepared as a masterbatch. Carbon black was added to the compound either as a single portion or as two separate portions, one in the PALF masterbatch and the other in the main mixing step. It was found that, despite using the same final compound formulation, the mixing scheme significantly affected the medium strain region of the vulcanizate stress-strain curve. No stress drop in this strain region was observed for the two-step mixing scheme. Models for composites with different preparation methods are proposed and discussed.  相似文献   
56.
In the present work, dynamic compression response of polypropylene (PP) based composites reinforced with Kevlar/Basalt fabrics was investigated. Two homogeneous fabrics with Kevlar (K3D) and Basalt (B3D) yarns and one hybrid (H3D) fabric with a combination of Kevlar/Basalt yarns were produced. The architecture of the fabrics was three-dimensional angle-interlock (3D-A). Three different composite laminates were manufactured using vacuum-assisted compression molding technique. The high strain rate compression loading was applied using a Split-Hopkinson Pressure Bar (SHPB) set-up at a strain rate regime of 3633–5235/s. The results indicated that the dynamic compression properties of thermoplastic 3D-A composites are strain rate sensitive. In all the composites, the peak stress, toughness and modulus were increased with strain rate. However, the strain at peak stress of Basalt reinforced composites (B3D, H3D) decreased approximately by 25%, while for K3D specimens it increased approximately by 15%. The K3D composites had a higher strain rate as compared to the B3D and H3D composites. In the case of K3D composite, except strain at peak stress, remaining dynamic properties were lower than the B3D composite, however, hybridization increased these properties. The failure mechanisms of 3D-A composites were characterized through macroscopic and scanning electron microscopy (SEM).  相似文献   
57.
This paper investigates the characterization of in-plane shear properties of thermoplastic composites reinforced with Kevlar/basalt fabrics. Different fabrics had architectures of two dimensional plain woven (2D-P) and three dimensional angle-interlock (3D-A). Intralayer hybridization was performed during the weaving of the fabrics with the combination of Kevlar and basalt yarns. Five 2D-P and three 3D-A composite laminates were manufactured with polypropylene (PP) as a matrix, using compression molding. Iosipescu shear tests were carried out to evaluate the in-plane shear properties. The experimental results revealed that the shear properties including shear modulus, shear strength and shear failure strain of homogeneous composites were improved by 6.5–14.9%, 4.3–19.7%, and 3.2–46.7%, respectively. Similarly, change in the fabric architecture from 2D-P to 3D-A also enhanced the shear strength and shear failure strain by 32.0–41.6% and 7.2–22.5%, respectively. Intralayer hybrid composites had better in-plane shear properties than the interlayer hybrid composites. The fracture morphologies of the specimens were examined by scanning electron microscopy (SEM).  相似文献   
58.
A major concern affecting the efficient use of composite laminates is the effect of low velocity impact damage on the structural integrity [1–3]. The aim of this study is to characterize and assess the effect of laminate thickness, ply-stacking sequence and scaling technique on the damage resistance of CFRP laminates subjected to low velocity impact. Drop-weight impact tests are carried out to determine impact response. Ultrasonic C-scanning and cross-sectional micrographs are examined to assess failure mechanisms of the different configurations.It is observed that damage resistance decreases as impact energy increases. In addition, thicker laminates show lower absorbed energy but, conversely, a more extensive delamination due to higher bending stiffness. Thinner laminates show higher failure depth. Furthermore, quasi-isotropic laminates show better performance in terms of damage resistance. Finally, the results obtained demonstrate that introducing ply clustering had a negative effect on the damage resistance and on the delamination area.  相似文献   
59.
The present paper addressed the nonlinear stress-strain response in quasi-unidirectional E-glass fabric reinforced polypropylene composites under off-axis tensile loading. A series of monotonic and cyclic loading-unloading tensile tests were carried out. Both irreversible strains and stiffness degradation were observed in cyclic loading-unloading tests, which indicate that the nonlinear response of composites was induced by a combination of damage and plasticity. A coupled damage-plasticity model was employed to describe the nonlinear off-axis tensile stress-strain relation of materials. In this model, a plastic potential function together with associated plastic flow rule were adopted to assess the evolution of plastic strains. The damage variables in forms of stiffness degradation were expressed as a Weibull function of the effective stress. A full suite of model parameters was experimentally determined from cyclic loading-unloading tensile tests. The stress-strain curves predicted by this model agreed well with experimental results.  相似文献   
60.
Polymeric composites constitute an appealing class of materials with applications in various fields. Spin crossover (SCO) coordination complexes are switchable materials with potential use in data storage and sensors. Their incorporation into polymers can be considered an effective method for their wider practical application. In this study, Fe(II) SCO/polylactic acid hybrid polymeric composites have been prepared by film casting. The mononuclear coordination complex [Fe{N(CN)2}2(abpt)2] was incorporated into polylactic acid. The morphological, structural and thermoanalytical characterization of the composite films were performed via scanning electron microscopy (SEM), attenuated total reflectance (ATR/FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). In addition, the migration release study (MRS) of the SCO compound from the polymeric matrix into the food simulant 50% v/v water/ethanol solution was also examined via UV/Vis absorption. Of particular interest was the investigation of the SCO behavior of the coordination complex after its incorporation into the polymer matrix; it was accomplished by temperature-dependent micro-Raman spectroscopy. The described attempt could be considered a preparatory step toward the development of SCO-based temperature sensors integrated into food packaging materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号