首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   7篇
  国内免费   2篇
化学   193篇
晶体学   2篇
力学   9篇
数学   16篇
物理学   60篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   13篇
  2011年   15篇
  2010年   12篇
  2009年   14篇
  2008年   26篇
  2007年   20篇
  2006年   22篇
  2005年   10篇
  2004年   6篇
  2003年   14篇
  2002年   6篇
  2001年   6篇
  2000年   11篇
  1999年   14篇
  1998年   12篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   8篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
51.
Yeh SW  Lin CW  Li YW  Hsu IJ  Chen CH  Jang LY  Lee JF  Liaw WF 《Inorganic chemistry》2012,51(7):4076-4087
The reversible redox transformations [(NO)(2)Fe(S(t)Bu)(2)](-) ? [Fe(μ-S(t)Bu)(NO)(2)](2)(2-) ? [Fe(μ-S(t)Bu)(NO)(2)](2)(-) ? [Fe(μ-S(t)Bu)(NO)(2)](2) and [cation][(NO)(2)Fe(SEt)(2)] ? [cation](2)[(NO)(2)Fe(SEt)(2)] (cation = K(+)-18-crown-6 ether) are demonstrated. The countercation of the {Fe(NO)(2)}(9) dinitrosyliron complexes (DNICs) functions to control the formation of the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) dianionic reduced Roussin's red ester (RRE) [PPN](2)[Fe(μ-SR)(NO)(2)](2) or the {Fe(NO)(2)}(10) dianionic reduced monomeric DNIC [K(+)-18-crown-6 ether](2)[(NO)(2)Fe(SR)(2)] upon reduction of the {Fe(NO)(2)}(9) DNICs [cation][(NO)(2)Fe(SR)(2)] (cation = PPN(+), K(+)-18-crown-6 ether; R = alkyl). The binding preference of ligands [OPh](-)/[SR](-) toward the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) motif of dianionic reduced RRE follows the ligand-displacement series [SR](-) > [OPh](-). Compared to the Fe K-edge preedge energy falling within the range of 7113.6-7113.8 eV for the dinuclear {Fe(NO)(2)}(9){Fe(NO)(2)}(9) DNICs and 7113.4-7113.8 eV for the mononuclear {Fe(NO)(2)}(9) DNICs, the {Fe(NO)(2)}(10) dianionic reduced monomeric DNICs and the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) dianionic reduced RREs containing S/O/N-ligation modes display the characteristic preedge energy 7113.1-7113.3 eV, which may be adopted to probe the formation of the EPR-silent {Fe(NO)(2)}(10)-{Fe(NO)(2)}(10) dianionic reduced RREs and {Fe(NO)(2)}(10) dianionic reduced monomeric DNICs in biology. In addition to the characteristic Fe/S K-edge preedge energy, the IR ν(NO) spectra may also be adopted to characterize and discriminate [(NO)(2)Fe(μ-S(t)Bu)](2) [IR ν(NO) 1809 vw, 1778 s, 1753 s cm(-1) (KBr)], [Fe(μ-S(t)Bu)(NO)(2)](2)(-) [IR ν(NO) 1674 s, 1651 s cm(-1) (KBr)], [Fe(μ-S(t)Bu)(NO)(2)](2)(2-) [IR ν(NO) 1637 m, 1613 s, 1578 s, 1567 s cm(-1) (KBr)], and [K-18-crown-6 ether](2)[(NO)(2)Fe(SEt)(2)] [IR ν(NO) 1604 s, 1560 s cm(-1) (KBr)].  相似文献   
52.
A series of new soluble poly(amide‐imide)s were prepared from the diimide‐dicarboxylic acid 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane with various diamines by direct polycondensation in N‐methyl‐2‐pyrrolidinone containing CaCl2 with triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.52–0.86 dL · g?1. The poly(amide‐imide)s showed an amorphous nature and were readily soluble in various solvents, such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, and cyclohexanone. Tough and flexible films were obtained through casting from DMAc solutions. These polymer films had tensile strengths of 71–107 MPa and a tensile modulus range of 1.6–2.7 GPa. The glass‐transition temperatures of the polymers were determined by a differential scanning calorimetry method, and they ranged from 242 to 279 °C. These polymers were fairly stable up to a temperature around or above 400 °C, and they lost 10% of their weight from 480 to 536 °C and 486 to 537 °C in nitrogen and air, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3498–3504, 2001  相似文献   
53.
Complex fac‐[Fe(CO)3(TePh)3]? was employed as a “metallo chelating” ligand to synthesize the neutral (CO)3Mn(μ‐TePh)3Fe(CO)3 obtained in a one‐step synthesis by treating fac‐[Fe(CO)3(TePh)3]? with fac‐[Mn‐(CO)3(CH3CN)3]+. It seems reasonable to conclude that the d6 Fe(II) [(CO)3Fe(TePh)3]? fragment is isolobal with the d6 Mn(I) [(CO)3Mn(TePh)3]2? fragment in complex (CO)3Mn(μ‐TePh)3Fe(CO)3. Addition of fac‐[Fe(CO)3(TePh)3]? to the CpNi(I)(PPh3) in THF resulted in formation of the neutral CpNi(TePh)(PPh3) also obtained from reaction of CpNi(I)(PPh3) and [Na][TePh] in MeOH. This investigation shows that fac‐[Fe(CO)3(TePh)3]? serves as a tridentate metallo ligand and tellurolate ligand‐transfer reagent. The study also indicated that the fac‐[Fe(CO)3(SePh)3]? may serve as a better tridentate metallo ligand and chalcogenolate ligand‐transfer reagent than fac‐[Fe(CO)3(TePh)3]? in the syntheses of heterometallic chalcogenolate complexes.  相似文献   
54.
Photophysical and solution properties of pyrene-labeled poly(3-dimethyl(methylmethacryloyl ethyl) ammonium propane sulfonate), poly(DMAPS/Py), were studied in terms of fluorescence emission measurement. The IE/IM was shown as a function of polymer concentration in deionized water. IE/IM value decreases with an increase in the salt concentration. The addition of surfactants to the aqueous solution of poly(DMAPS/Py) can either induce the mixed micelle of intra-polymer and its surrounding surfactants and/or mixed micelle of inter-polymers and their surrounding surfactants. Models of interactions between poly(DMAPS/Py) and surfactant or divalent salt in aqueous solution are proposed.  相似文献   
55.
New functional monomer methacryloyl isocyanate containing 4‐chloro‐1‐phenol (CPHMAI) was prepared on reaction of methacryloyl isocyanate (MAI) with 4‐chloro‐1‐phenol (CPH) at low temperature and was characterized with IR, 1H, and 13C‐NMR spectra. Radical polymerization of CPHMAI was studied in terms of the rate of polymerization, solvent effect, copolymerization, and thermal properties. The rate of polymerization of CPHMAI has been found to be smaller than that of styrene under the same conditions. Polar solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethyl formamide (DMF) were found to slow the polymerization. Copolymerization of CPHMAI (M1) with styrene (M2) in tetrahydrofuran (THF) was studied at 60°C. The monomer reactivity ratio was calculated to be r1 = 0.49 and r2 = 0.66 according to the method of Fineman—Ross. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 469–473, 2000  相似文献   
56.
57.
A new diamine, 2,2-bis[4-(4-aminophenoxy)phenyl]norbornane (BAPN), containing both ether and norbornane cardo groups, was synthesized in three steps started from norcamphor. A series of cardo polyamides were obtained by the direct polycondensation of BAPN and various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polyamides had inherent viscosities in the range of 0.82–1.58 dL g−1, and were readily soluble in polar aprotic solvents such as NMP, N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide and dimethyl sulfoxide. These polymers were cast in DMAc solution into transparent, flexible, and tough films that were further characterized by X-ray and mechanical analysis. All the polymers were amorphous, and the polyamide films had a tensile strength range of 71–89 MPa, an elongation at break range of 5–9%, and a tensile modulus range of 2.0–2.3 GPa. Polyamides showed glass transition temperatures in the range of 256–296°C as measured by DSC and thermogravimetric analysis indicated no weight loss below 450°C in nitrogen and air atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2791–2794, 1999  相似文献   
58.
A novel polyaryloxydiphenylsilane was synthesized successfully by solution polycondensation of 2,2′-dimethyl-biphenyl-4,4′-diol with diphenyldichlorosilane and the catalyst triethylamine in toluene at 80 °C. Polymers with a relatively high inherent viscosity and yield were obtained when the reactions were carried out in aromatic and lipophilic solvents. The novel polyaryloxydiphenylsilane was soluble in chlorinated aliphatic hydrocarbons such as methylene chloride and chloroform as well as in polar solvents such as dimethyl sulfoxide, N,N-dimethylformamide, and N,N-dimethylacetamide and also in some common organic solvents such as benzene and toluene. However, it was insoluble in both aliphatic hydrocarbons as well as in alcoholic solvents. The polyaryloxydiphenylsilane began losing weight around 400 °C under a nitrogen atmosphere, and the 10% weight-loss temperature was 473 °C. The glass-transition temperature of the polyaryloxydiphenylsilane was 102 °C. The glass transition could be lowered by the copolymerization technique with 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane as an aromatic diol comonomer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4591–4595, 1999  相似文献   
59.
60.
A series of new soluble polyamides having isopropylidene and methyl-substituted arylene ether moieties in the polymer chain were prepared by the direct polycondensation of 3,3′,5,5′-tetramethyl-2,2-bis[4-(4-carboxyphenoxy)phenyl]propane and various diamines in N-methyl-2-pyrrolidinone (NMP) containing CaCl2 using triphenyl phosphite and pyridine as condensing agents. Polymers were produced with moderate to high inherent viscosities of 0.85–1.47 dL g−1 while the weight-average molecular weight and number-average molecular weight were in the range of 86,700–259,000 and 43,300–119,000, respectively. All the polymers were readily dissolved in polar aprotic solvents such as NMP, N,N-dimethylacetamide, and N,N-dimethylformamide, as well as less polar solvents such as m-cresol and pyridine, and even soluble in tetrahydrofuran. These polymers were solution-cast into transparent, flexible and tough films. All of the polymers were amorphous and the polyamide films had a tensile strength range of 82–122 MPa, an elongation at break range of 6–18%, and a tensile modulus range of 2.0–2.8 GPa. These polyamides had glass transition temperatures between 233–260°C and 10% weight loss temperatures in the range of 450–489 and 459–493°C in nitrogen and air atmosphere, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1997–2003, 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号