首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10586篇
  免费   1234篇
  国内免费   1696篇
化学   6603篇
晶体学   290篇
力学   503篇
综合类   8篇
数学   2620篇
物理学   3492篇
  2024年   7篇
  2023年   267篇
  2022年   328篇
  2021年   379篇
  2020年   429篇
  2019年   266篇
  2018年   306篇
  2017年   379篇
  2016年   445篇
  2015年   503篇
  2014年   686篇
  2013年   861篇
  2012年   1003篇
  2011年   1109篇
  2010年   830篇
  2009年   775篇
  2008年   636篇
  2007年   748篇
  2006年   719篇
  2005年   507篇
  2004年   340篇
  2003年   284篇
  2002年   305篇
  2001年   288篇
  2000年   203篇
  1999年   230篇
  1998年   136篇
  1997年   120篇
  1996年   81篇
  1995年   59篇
  1994年   48篇
  1993年   49篇
  1992年   29篇
  1991年   38篇
  1990年   29篇
  1989年   21篇
  1988年   11篇
  1987年   13篇
  1986年   21篇
  1985年   8篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
53.
Field-effect transistors (FETs) are one of the most widely-used electronic sensors for continuous monitoring and detection of contaminants such as pharmaceuticals and endocrine-disrupting compounds at low concentrations. FETs have been successfully utilized for the rapid analysis of these environmental pollutants due to their advantageous material properties like the disposability, rapid responses and simplicity. This paper presented an up-to-date overview of applied strategies with different bio-based materials in order to enhance the analytical performances of the designed sensors. Comparison and discussion were made between characteristics of recently engineered FET bio-sensors used for the detection of famous and selected pharmaceutical compounds in the literature. The recent progress in environmental research applications, comments on interesting trends, current challenge for future research in endocrine-disrupting chemicals’ (EDCs) detection using FETs biosensors were highlighted.  相似文献   
54.
激光是受激辐射的光放大,所辐射的波长取决于增益介质中关键电子的能级结构,特别是其最外层电子的状态决定了可能实现的激光特性。激光发展60年来,激光晶体作为激光的重要激活材料,推动了激光技术的进步和普及,是一个研究历史长而又异常活跃的研究领域。当前,超短超强脉冲激光在加工、医疗、国防等关系国计民生的领域有重要需求,适合超短超强激光的激光晶体成为了本领域的研究热点,其关键是揭示最外层电子的影响因素及设计和生长具有宽波段发射性能的激光晶体。本论文从探讨影响激活离子光谱性能的关键因素出发,综述了以本课题组十余年研究的10余种无序激光晶体为主要部分的研究结果和进展,涉及晶体生长、晶体物理、激光器件设计及应用等工作,包含了高级、中级和低级对称性晶体及其获得的最短脉冲激光结果,希望能为本领域的后续研究提供一定的参考和借鉴。  相似文献   
55.
Lonicerae Japonicae Flos (LJF) is a typical herbal medicine and is used as a functional food. LJF, which has complex chemical compounds, has various biological effects. The global metabolomics, focusing on both the endogenous and exogenous metabolites, have not yet been investigated for LJF in normal healthy rats using LC–MS. In this study, plasma metabolomics was analyzed after the administration of LJF at different time intervals, and the exogenous metabolites were identified. Partial least squares discriminant analysis showed significant differences in chemical content in the dosed rats. Cholic acid, indoleacrylic acid, indolelactic acid, hippuric acid, N-acetyl-phenylalanine, and N-acetyl-serotonin significantly accumulated in the dosed rats. Lysophosphatidylethanolamine and lysophosphatidylcholine content, including plasmalogen, increased. There were 25 components of LJF, including 15 prototypes and 10 metabolites, that were identified. The 15 prototypes included phenolic acids, flavonoids, and iridoids, and their contents decreased with an increase in the administration time. Glucuronidation and sulfation of polyphenols were found for LJF. The exogenous glucuronide and sulfate metabolites—including dihydrocoumaric acid-sulfate, dihydrocaffeic acid-sulfate, dihydroferulic acid-sulfate, apigenin-glucuronide, apigenin-glucuronide-sulfate, isorhamnetin-glucuronide-sulfate, and others—were identified with a neutral loss of 176 and 80, respectively. The metabolic differences found in the study may serve as biomarkers of LJF consumption and promote the understanding of the mechanism of action of LJF.  相似文献   
56.
The photoinitiation abilities of three 1,2-diketones [i.e., acenaphthenequinone ( ANPQ ), aceanthrenequinone ( AATQ ), and 9,10-phenanthrenequinone ( PANQ )]-based photoinitiating systems [PISs, with additives such as iodonium salt, N-vinylcarbazole (NVK), tertiary amine, and phenacyl bromide (R-Br)] for cationic photopolymerization and free-radical photopolymerization under the irradiation of ultraviolet (UV; 392 nm) or blue (455 nm) light-emitting diode (LED) bulb are investigated. All 1,2-diketones studied exhibit ground state absorption that match with the emission spectra of UV (392 nm) or blue LED (455 nm) better than that of the well-known blue-light-sensitive photoinitiator camphorquinone (CQ). In particular, AATQ /iodonium salt/NVK can show high photoinitiating ability (with epoxide conversion yield >70%) under the UV light irradiation due to the effect of NVK. In addition, 1,2-diketone/iodonium salt (and optional NVK) systems are capable of initiating free-radical photopolymerization of methacrylates, with conversions of 50–58%. Furthermore, some 1,2-diketone/tertiary amine (and optional R-Br) combinations are found to demonstrate high efficiency to initiate free-radical photopolymerization, and 71% of methacrylate conversion can be achieved with PANQ /tertiary amine/R-Br PIS. Some 1,2-ketone-based PISs can even exhibit higher efficiency than the CQ-based systems. The photochemical mechanism of the radical generation from the 1,2-diketone-based PISs is investigated and found to be consistent with the related photopolymerization efficiency. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 792–802  相似文献   
57.
Copper nanoclusters (CuNCs) as a new class of fluorescent materials have attracted a great deal of interest due to their outstanding fluorescence properties. In this work, a variety of organic solvents were used to induce self-assembly of glutathione-capped CuNCs (GSH-CuNCs) to form ordered assemblies with enhanced fluorescence properties. Assemblies with multicolor fluorescence emission were constructed on the basis of the aggregation-induced emission (AIE) of GSH-CuNCs and the solvent effect. The fluorescence emission from these GSH-CuNCs assemblies can also be tuned from yellow to purple by changing the organic solvent. A possible mechanism based on the size of the assemblies and electron transfer was explored to explain the solvent effects on GSH-CuNCs. Stimuli-responsive nanoswitches with excellent reversibility can be controlled by changing the type of organic solvent and the ratio of the organic solvent to the aqueous solution of GSH-CuNCs. As the CuNCs assemblies exhibit strong, stable, and color-tunable fluorescence, they were employed as color-conversion materials for recognizing different organic solvents.  相似文献   
58.
It has been reported that many molecules could inhibit the aggregation of Aβ (amyloid-β) through suppressing either primary nucleation, secondary nucleation, or elongation processes. In order to suppress multiple pathways of Aβ aggregation, we screened 23 small molecules and found two types of inhibitors with different inhibiting mechanisms based on chemical kinetics analysis. Trp-glucose conjugates ( AS2 ) could bind with fibril ends while natural products ( D3 and D4 ) could associate with monomers. A cocktail of these two kinds of molecules achieved co-inhibition of various fibrillar species and avoid unwanted interference.  相似文献   
59.
60.
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号