首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   10篇
  国内免费   16篇
化学   346篇
晶体学   1篇
物理学   6篇
  2023年   24篇
  2022年   4篇
  2021年   11篇
  2020年   23篇
  2019年   18篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   10篇
  2014年   23篇
  2013年   77篇
  2012年   12篇
  2011年   13篇
  2010年   13篇
  2009年   11篇
  2008年   20篇
  2007年   13篇
  2006年   10篇
  2005年   4篇
  2004年   8篇
  2003年   12篇
  2002年   10篇
  2001年   6篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1988年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有353条查询结果,搜索用时 437 毫秒
51.
This review highlights the concept of multiple click reaction strategy which is utilized for design and synthesis of well‐defined complex macromolecular structures as well as multifunctionalization of well‐defined polymers. This review examines the click combinations mainly from double to quadruple and additionally from the most frequently used to the least. The present review may also be regarded as an update for recent reviews dealing with specifically double and triple click reaction combinations in synthetic polymer chemistry. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3147–3165  相似文献   
52.
The development and use of a multiple-activation catalyst with ion-paired Lewis acid and Brønsted acid in an asymmetric aza-Diels–Alder reaction of simple dienes (non-Danishefsky-type electron-rich dienes) was achieved by utilizing the [FeBr2]+[FeBr4] combination prepared in situ from FeBr3 and chiral phosphoric acid. Synergistic effects of the highly active ion-paired Lewis acid [FeBr2]+[FeBr4] and a chiral Brønsted acid are important for promoting the reaction with high turnover frequency and high enantioselectivity. The multiple-activation catalyst system was confirmed using synchrotron-based X-ray absorption fine structure measurements, and theoretical studies. This study reveals that the developed catalyst promoted the reaction not only by the interaction offered by the ion-paired Lewis acid and the Brønsted acid but also noncovalent interactions.  相似文献   
53.
54.
Garratt-Braverman cyclization has emerged as one of the simplest synthetic tool to construct two consecutive CC bonds leading to the formation of various important structural scaffolds having significance in the field of therapeutics and material science. The strategic design of suitable precursor for this cycloaromatization reaction involves the deep understanding of reaction pathways involving diradicals and ions. On the other hand, the reaction offers an unprecedented mechanistic paradox for the chemists to solve. This report aims at outlining the recent mechanistic and synthetic developments with special emphasis on the research outcomes from our laboratory.  相似文献   
55.
The reductive coupling reaction of 1,4-bis(3-acetyl-5-tert-butyl-2-methoxyphenyl)butane 3 was carried out using TiCl4-Zn in pyridine followed by a McMurry coupling reaction to afford the compounds anti and syn 1,2-dimethyl[2.4]MCP-1-ene 4. Bromination of 4 with BTMA-Br3 in dry CH2Cl2 afforded the interesting compound 1,2-bis-(bromomethyl)-5,15-di-tert-butyl-8,18-dimethoxy[2.4]MCP-1-ene 6 and consecutive debromination with Zn and AcOH in CH2Cl2 solution afforded the stable solid 5,15-di-tert-butyl-8,18-dimethoxy-1,2-dimethylene[2.4]MCP 7 in 89% yield. Compound 7 was conveniently employed in a Diels–Alder reaction with dimethyl acetylenedicarboxylate (DMAD) to provide 2-(3′,6′-dihydrobenzo)-5,15-di-tert-butyl-8,18-dimethoxy[2.4]MCP-4′,5′-dimethylcarboxylate 8 in good yield. Diels–Alder adduct 8 was converted into a novel and inherently chiral areno-bridged compound [2.4]MCP 9 by aromatization. The chirality of the two conformers was characterized by circular dichroism (CD) spectra of the separated enantiomer which are perfect mirror images of each other.  相似文献   
56.
We report herein the asymmetric total synthesis of periglaucines A–C, N,O-dimethyloxostephine and oxostephabenine. The key strategies used include: 1) a RhI-catalyzed regio- and diastereoselective Hayashi-Miyaura reaction to connect two necessary fragments; 2) an intramolecular photoenolization/Diels–Alder (PEDA) reaction to construct the highly functionalized tricyclic core skeleton bearing a quaternary center; 3) a bio-inspired intramolecular Michael addition and transannular acetalization to generate the aza[4.4.3]propellane and the tetrahydrofuran ring.  相似文献   
57.
Targeted delivery and specific activation of photosensitizers can greatly improve the treatment outcome of photodynamic therapy. To this end, we report herein a novel dual receptor-mediated bioorthogonal activation approach to enhance the tumor specificity of the photodynamic action. It involves the targeted delivery of a biotinylated boron dipyrromethene (BODIPY)-based photosensitizer, which is quenched in the native form by the attached 1,2,4,5-tetrazine unit, and an epidermal growth factor receptor (EGFR)-targeting cyclic peptide conjugated with a bicycle[6.1.0]non-4-yne moiety. Only for cancer cells that overexpress both the biotin receptor and EGFR, the two components can be internalized preferentially where they undergo an inverse electron-demand Diels–Alder reaction, leading to restoration of the photodynamic activity of the BODIPY core. By using a range of cell lines with different expression levels of these two receptors, we have demonstrated that this stepwise “deliver-and-click” approach can confine the photodynamic action on a specific type of cancer cells.  相似文献   
58.
This focus article presents the author’s view on the problems in the development of biorefining strategies based on the use of 5-(hydroxymethyl)furfural (HMF), the key product derived from renewable plant biomass that was recognized as the ‘sleeping giant’ of the sustainable chemistry. The several key problems that hinder the large-scale production of HMF and its applicability in the laboratory organic synthesis and industry are discussed. This minireview is also focused on the development of the dynamic cross-linked polymers with controlled three-dimensional structure based on Diels–Alder reaction of biobased HMF-derived furans with maleimides. Realization of scalable technologies for an efficient production of such ‘smart’ analogues of the traditional petrochemical-based materials could be the basis for the realization of the competitive HMF-promoted biorefining.  相似文献   
59.
It is a formidable challenge in polycondensation to simultaneously construct multiple covalent bonds to prepare double-stranded polymers of intrinsic microporosity (PIMs) with fused multicyclic linkages. To the best of our knowledge, this is the first study to develop a self-accelerating Diels–Alder reaction for successfully preparing double-stranded PIMs with fused multicyclic backbone structures. A self-accelerating Diels–Alder reaction was developed based on the [4+2] cycloaddition of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD) and ortho-quinone compounds. In this reaction, the cycloaddition of ortho-quinone with the first alkyne of DIBOD activates the second alkyne, which reacts with ortho-quinone at a rate constant 192 times larger than that of the original alkyne. Using this self-accelerating reaction to polymerize DIBOD and spirocyclic/cyclic difunctional ortho-quinone monomers, a novel stoichiometric imbalance-promoted step-growth polymerization method was developed to prepare PIMs. The resultant PIMs possess intrinsic ultramicropores with pore sizes between 0.45 to 0.7 nm, high specific surface areas above 646 m2 g−1, and good H2 separation performance.  相似文献   
60.
Precise control of multiple structural parameters associated with vinyl polymers is important for producing materials with the desired properties and functions. While the development of living polymerization methods has provided a way to control the various structural parameters of vinyl polymers, the concomitant control of their sequence and regioregularity remains a challenging task. To overcome this challenge, herein, we report the living cationic ring-opening polymerization of hetero Diels–Alder adducts. The scalable and modular synthesis of the cyclic monomers was achieved by a one-step protocol using readily available vinyl precursors. Subsequently, living polymerization of the cyclic monomers was examined, allowing the synthesis of vinyl polymers while controlling multiple factors, including molecular weight, dispersity, alternating sequence, head-to-head regioregularity, and end-group functionality. The living characteristics of the developed method were further demonstrated by block copolymerization. The synthesized vinyl polymers exhibited unique thermal properties and underwent fast photodegradation even under sunlight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号