首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   747篇
  免费   60篇
  国内免费   74篇
化学   461篇
晶体学   2篇
力学   16篇
综合类   73篇
数学   99篇
物理学   230篇
  2024年   3篇
  2023年   16篇
  2022年   18篇
  2021年   26篇
  2020年   22篇
  2019年   20篇
  2018年   18篇
  2017年   28篇
  2016年   26篇
  2015年   30篇
  2014年   54篇
  2013年   29篇
  2012年   38篇
  2011年   30篇
  2010年   42篇
  2009年   47篇
  2008年   46篇
  2007年   43篇
  2006年   38篇
  2005年   37篇
  2004年   39篇
  2003年   38篇
  2002年   31篇
  2001年   32篇
  2000年   15篇
  1999年   15篇
  1998年   23篇
  1997年   11篇
  1996年   15篇
  1995年   13篇
  1994年   9篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
排序方式: 共有881条查询结果,搜索用时 15 毫秒
41.
通过在N2气氛围下热裂解富集Mn的鸢尾可得到Mn/生物炭(BC)材料, 并按植物叶(Leaf)和根部(Root)分别将其分别命名为BC-L0, BC-L1, BC-L2, BC-R0, BC-R1和BC-R2. 采用扫描电子显微镜(SEM)、 能谱分析(EDS)仪、 X射线衍射(XRD)仪、 X射线光电子能谱(XPS)、 傅里叶变换红外光谱(FTIR)、 原子吸收光谱(AAS)和比表面积分析(BET)仪等对Mn/生物炭材料的Mn含量、 化学组成与形貌进行了表征, 发现鸢尾叶部为Mn主要富集部位, 最大富集量为13.0 mg/g, 且Mn以Mn2O3薄片存在于生物炭表面. 利用Mn/生物炭与H2O2构建了类Fenton体系, 在中性条件下BC-L2-H2O2体系对有机污染物罗丹明B(RhB, 3×10 -5 mol/L)的降解率达到50%(180 min), 表明该体系具备氧化去除RhB的能力, 并推测了该体系对RhB的催化氧化机理. 结果表明, 先将Mn超富集植物转化为Mn/生物炭材料, 再通过添加H2O2能构建具有氧化能力的类Fenton体系, 可用于对有机污染物的降解, 实现“以废治废”的绿色循环思路, 为Mn富集的植物后续处理提供一种新的转化及应用方式.  相似文献   
42.
原子荧光光谱法对果园土壤中砷和汞空间分布特征的研究   总被引:2,自引:0,他引:2  
利用王水消解—双道原子荧光光谱法测定了山东省苹果主产区栖霞市果园土壤中的As和Hg含量,验证了检测方法的检出限、准确度与精密度,分析了栖霞市果园土壤中重金属As和Hg的空间分布特征,并对栖霞市果园土壤中As和Hg的污染状况进行评价。结果表明:栖霞市果园土壤中As的含量范围为2.79~20.93 mg·kg-1,平均值为10.59 mg·kg-1,而Hg的含量范围为0.01~0.79 mg·kg-1,平均值为0.12 mg·kg-1。As元素在土壤中变异较小,而Hg元素在土壤中变异较大。频数分布图显示,土壤中As元素含量基本符合正态分布,含量大多在7~15 mg·kg-1之间,土壤中Hg元素含量不符合正态分布,含量大多在0.03~ 0.21 mg·kg-1之间。土壤As和Hg含量与土壤各养分指标之间的相关性均不显著,且土壤中As和Hg两种元素之间亦无显著的相关关系。以国家绿色食品产地环境质量标准为评价依据,栖霞市果园土壤As含量处于无污染的清洁水平,而土壤Hg的污染指数大于1的样点占总数的4.76%,需要引起管理者的注意。  相似文献   
43.
土壤和沉积物石油污染现状   总被引:4,自引:0,他引:4  
针对全球石油污染的现状从原油的组成、分类与对环境的潜在影响、原油中有毒有害物质的成分、石油的工业工艺流程等方面进行了论述,并着重分析了中国土壤和沉积物原油污染,对松辽盆地、济阳坳陷、塔里木盆地、渤海油区等区域污染现状作了详细介绍,对石油勘探开发中重要污染源之一——化学助剂造成的污染也作了总括.  相似文献   
44.
热分析SDT-2960操作经验介绍   总被引:1,自引:1,他引:0  
讲述了针对不同性质样品进行热分析仪器SDT 2960测试的操作经验,主要包括样品前期处理、加样量、加样方式等。掌握这些经验能使测试结果更加准确,还能最大限度地减小仪器污染的可能性。  相似文献   
45.
温州市PM_(2.5)中水溶性离子污染特征及来源分析   总被引:3,自引:0,他引:3       下载免费PDF全文
2015年1~12月在温州市区采集448个PM_(2.5)样品,采用离子色谱法分析PM_(2.5)中9种水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、Cl~-、Na~+、K~+、Ca~(2+)、Mg~(2+)和F~-)的浓度,研究其污染特征、化学组分和来源.采样期间9种水溶性离子总浓度为39.97μg·m~(-3),SO_4~(2-)、NO_3~-和NH_4~+占所测水溶性离子总量的(40.19±10.04)%.离子总浓度的季节变化特征为冬季春季秋季夏季,从空间分布上看,多数季节市站采样点PM_(2.5)中离子总浓度低于南浦、龙湾和瓯海采样点.相关性分析结果显示,PM_(2.5)值与NH_4~+、Ca~(2+)、Na~+、K~+、Cl~-、NO_3~-、SO_4~(2-)浓度显著相关,PM_(2.5)中SO_4~(2-)和NH_4~+的主要结合方式为(NH_4)_2SO_4.硫氧化速率(SOR)和氮氧化速率(NOR)的年均值分别为0.44±0.09和0.13±0.04,表明温州市PM_(2.5)中SO_4~(2-)和NO_3~-主要由二次转化形成.主成分分析结果表明,温州市PM_(2.5)中水溶性离子主要来源于燃煤(火力发电和工业燃煤)、生物质燃烧、机动车尾气以及道路和建筑扬尘.  相似文献   
46.
稻谷是我国主要储粮品种。为快速、准确鉴定稻谷霉变状态,建立了一种基于近红外光谱的稻谷霉菌污染定性、定量分析方法。首先,将四种谷物中常见有害霉菌(黄曲霉3.17、黄曲霉3.3950、寄生曲霉3.3950、灰绿曲霉3.0100)分别接种在灭菌稻谷样品上。其次,将接种霉菌样品进行人工模拟储藏(28 ℃、RH 80%),并采集不同储藏时间(0,2,4,7和10 d)稻谷的近红外漫反射光谱信号。最后,利用主成分分析(PCA)、判别分析(DA)和偏最小二乘回归(PLSR)方法建立稻谷霉菌污染的快速分析模型。结果显示,近红外光谱可有效区分感染不同霉菌的稻谷样品,平均判别正确率达87.5%。稻谷霉变随储藏时间逐渐加深,近红外光谱对感染单一霉菌稻谷样品霉变状态的判别正确率达92.5%,多种霉菌的判别正确率达87.5%。稻谷中的菌落总数的PLSR模型定量结果为:有效决定系数(R2P)为0.882 3、验证均方根误差(RMSEP)为0.339 Lg CFU·g-1,相对标准偏差(RPD)为2.93。结果表明,近红外光谱法可以作为一种快速、无损的分析方法来判定稻谷霉菌侵染状况,确保稻谷储运安全。  相似文献   
47.
土壤中不同浓度Cu2+含量映射到土壤光谱上的信息量十分微弱,并且这些高光谱数据中也存在着难以避免的噪声,因而本研究的关键是如何在土壤光谱复杂的噪声环境中提取微弱Cu2+信息。经验模态分解算法(EMD)能够有效去除高光谱数据中的噪声,且EMD是Hilbert变换对“非线性非稳定”信号时频分析的前提,当引入Huang变换后,可利用Hilbert-Huang变换(HHT)模型时频分析高光谱数据以实现降噪处理与信息提取。通过时频的HHT分析不同浓度Cu2+污染下的土壤光谱,完成从原始光谱经EMD分解出各本征模态函数(IMF)分量的包络线、调制信号和频谱等曲线中挖掘土壤光谱的Cu2+污染信息。研究结果表明,相同浓度Cu2+污染时的土壤光谱HHT时频分析结果相同,不同浓度时则不同,所以也可依据IMF分量反演土壤Cu2+含量。因此,高光谱数据的HHT时频分析能为土壤光谱的信息挖掘、光谱诊断和Cu2+含量反演等提供一种新的方法和思路。  相似文献   
48.
自然条件下,铂族元素(PGEs)一直被认为是表生条件下的痕量元素。但是,随着铂族元素在机动车排放催化剂及其他方面的广泛使用,最终导致Pt,Pd,Rh会排放到环境中。目前,铂族元素在环境中存在一定程度的积累现象,机动车尾气催化转换器被认为是其污染的主要来源。为研究北京市城区内道路尘土铂族元素的污染状况,于2010年11月采集了北京市内大型居民社区内的道路尘土样品。样品先经王水热消解以及阳离子交换树脂(Dowex AG50W-X8)分离纯化后,采用电感耦合等离子体质谱仪(ICP-MS)分析了道路尘土样品中三种铂族元素(铂(Pt)、钯(Pd)和铑(Rh))的浓度。结果表明:北京城区内居民社区道路尘土中Pd,Pt和Rh的含量范围分别为:14.20~161.80,9.39~70.80和3.18~17.05 ng·g-1,其平均浓度分别为50.76,23.82和7.54 ng·g-1,高于北京市土壤背景值, 说明北京城市居民社区内道路尘土中PGEs已经有了一定程度的富集。其中,Pd,Pt和Rh分别高于北京土壤背景值约49.8,32.6和5.1倍。为了定量评价道路尘土中PGEs的污染状况,采用地积累指数法对北京市道路尘土进行了评价。地积累指数法评价结果发现:大型居民社区内道路尘土中PGEs污染程度由强至弱的顺序依次为:Pd>Pt>Rh,总体而言,北京城区内大型居民社区内道路尘土存在较为明显的PGEs污染。  相似文献   
49.
为研究黄河甘宁蒙段丰水期过滤水和悬浮物中重金属的含量特征及污染状况,采用高分辨电感耦合等离子体质谱仪(HR-ICP-MS)对黄河甘宁蒙段昭君浮桥 (S1)、包头浮桥(S2)等10个采样点过滤水中六种重金属(Cd, Pb, Cr, As, Cu和Zn)及悬浮物中九种重金属(Cd, Pb, Cr, Ni, Cu, V, Co, Zn和Mn)的含量特征、污染评价和源分析进行研究。结果表明:(1)过滤水中只有Cr元素含量在所有采样点超出《地表水环境质量标准》(GB3838—2002) 的标准限值,且在10个采样点中均为最高(74.8~94.7 μg·L-1);单因子指数(Ii)评价结果表明除包头浮桥(S2)未受总氮(TN)污染外,其余采样点水质均受Cr元素和TN污染;内梅罗综合指数法(I)得出所有采样点的I值均在1~2之间(轻污染程度),表明黄河甘宁蒙段水质,尤其是下游段(S1~S6)已不是生活饮用水、水产养殖等的理想水源。(2)悬浮物中Ni含量(34.7 μg·L-1) 只在玛曲点(S10)低于中国土壤元素背景值(35.2 μg·L-1),在其余点均高于背景值,而其余八种元素在10个采样点的含量均高于背景值;地累积指数法(Igeo)结果表明九种元素中Cd元素的Igeo值(0.452~2.89)在10个采样点中均为最高值,且在昭君浮桥(S1)、包头浮桥(S2)、乌海(S5)和东大沟入黄河口(S8)这四个采样点处达到中污染-重污染程度,其余八种元素在各采样点的Igeo值均小于1,为无污染或无污染-中污染程度。研究结果为全面研究该流域重金属分布、迁移及有效保护提供可信的实验数据。  相似文献   
50.
基于红外光谱聚类分析的纳滤膜污染动态发展行为研究   总被引:1,自引:0,他引:1  
污水再生利用是解决水资源短缺问题的有效对策。纳滤技术由于能够生产高质量的再生水,成为污水深度处理、再生利用的有效方法之一。然而,在纳滤过程中存在复杂的、动态的膜污染现象,会导致产水通量、产水质量下降等问题。研究膜污染动态发展的行为,对于膜污染的分阶段针对性控制具有重要意义。有机物是污染层动态发展过程的重要指示性成分,红外光谱是表征污染层发展过程中表面有机物官能团变化情况的重要手段。但由于红外光谱中峰的数量多,系列样品之间峰强度的差别较小(尤其是当膜污染过程中的采样间隔较小时),利用直观观察不易甄别不同样品间的谱图差异及其变化趋势,在此水平上难以对膜污染阶段进行准确识别、对各阶段特征进行有说服力的分类概括。为探索膜污染的动态发展过程,本研究将傅里叶变换红外光谱与统计学聚类分析相结合,对膜污染过程中不同时间点的膜样本进行红外光谱分析,再对红外光谱数据进行一系列预处理和系统聚类分析,从而客观解读膜污染动态发展过程中系列样品红外光谱分阶段变化规律。考虑到类别间距离度量方法、红外吸收峰强度标准化、峰之间自相关性、峰与样本之间交互作用等因素的影响,研究采用对应分析对红外数据进行预处理,提取各样本在主要维度上的得分,随后基于标准化欧式距离对各样本进行聚类。在为期一个月的城市污水深度处理纳滤试验过程中,由于污染物在膜表面累积,纳滤膜发生了较为严重的污染。通过对13个不同时间点的膜样本进行红外光谱聚类发现,膜污染可清晰划分为如下阶段:空白膜、阶段Ⅰ(3 h~8 d)、阶段Ⅱ(10~15 d)和阶段Ⅲ(20~30 d)。采用红外聚类,得到膜表面X射线光电子能谱(XPS)和三磷酸腺苷(ATP)含量分析等方法的交互验证。结果表明,随着膜污染的发展,膜表面有机物成分与共存微生物量发生协同变化,各阶段大致特征为:阶段Ⅰ各类有机污染物初步覆盖,微生物开始富集;阶段Ⅱ多糖类污染物比例上升,微生物的富集趋于稳定;阶段Ⅲ整体污染趋于成熟,有机污染物氢键特征更加明显。该研究通过对红外数据进行聚类分析,能够灵敏地探测各红外图谱之间的差别,有助于对红外光谱规律的深度挖掘,为膜污染阶段的识别和划分提供了一种客观、自动、可量化的辅助性方法,并且有助于归纳出不同阶段的污染层特征,可作为膜污染时序特征的侦查手段。此外,除了膜污染的研究,在材料、吸附等领域,只要有一系列变化的红外光谱,均可尝试采用红外光谱聚类分析方法,获取基于红外特征的定类信息或分阶段规律。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号