首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2371篇
  免费   632篇
  国内免费   91篇
化学   2543篇
晶体学   15篇
力学   146篇
综合类   3篇
数学   31篇
物理学   356篇
  2024年   2篇
  2023年   35篇
  2022年   51篇
  2021年   86篇
  2020年   183篇
  2019年   104篇
  2018年   102篇
  2017年   67篇
  2016年   226篇
  2015年   196篇
  2014年   180篇
  2013年   190篇
  2012年   152篇
  2011年   159篇
  2010年   117篇
  2009年   167篇
  2008年   156篇
  2007年   148篇
  2006年   141篇
  2005年   86篇
  2004年   102篇
  2003年   85篇
  2002年   38篇
  2001年   34篇
  2000年   46篇
  1999年   29篇
  1998年   32篇
  1997年   25篇
  1996年   15篇
  1995年   15篇
  1994年   13篇
  1993年   16篇
  1992年   10篇
  1991年   12篇
  1990年   8篇
  1989年   5篇
  1988年   14篇
  1987年   5篇
  1985年   10篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
排序方式: 共有3094条查询结果,搜索用时 15 毫秒
41.
The oxo-functionalization of organic substrates with the aid of metal oxo moieties is of fundamental importance not only in nature but also in academic and industrial research. Nevertheless the corresponding reaction mechanisms remain among the most enigmatic in chemistry and few of them are understood in detail. Recent research efforts have resulted in significantly improved information: in the cases of many oxygenation reactions evidence has been provided for the occurrence radical intermediates, even though the high selectivity observed suggests to a different mechanism. Examples stem from various areas of chemistry and include processes involving molecular metal oxo complexes, gas-phase and matrix-isolated species, metalloenzymes, and solid-state oxide surfaces. This review treats this seemingly wide variety of systems with the aim of providing an overview of common reactivity patterns and principles, as well as open problems.  相似文献   
42.
The ring opening of the oxadiaziridine by cleavage of the N-N bond has been theoretically investigated by SCF calculations improved with limited CI. The possible competition of this reaction with the better known ones (N-O bond cleavage, inversion of the N atom) is discussed. The chemical implications of the formation of a new type of 1,3-dipole are examined.  相似文献   
43.
The force fields, in-plane vibrations, and relative intensities of Raman spectra have been calculated and analyzed for the N1H and N3H tautomers of imidazole, imidazolium cation, and their model structures. The results obtained for the isolated state of imidazole correspond to the intramolecular mechanism of proton transfer.  相似文献   
44.
How does the enzyme nitrogenase reduce the inert molecule N2 to NH3 under ambient conditions that are so different from the energy‐expensive conditions of the best industrial practices? This review focuses on recent theoretical investigations of the catalytic site, the iron–molybdenum cofactor FeMo‐co, and the way in which it is hydrogenated by protons and electrons and then binds N2. Density functional calculations provide reaction profiles and activation energies for possible mechanistic steps. This establishes a conceptual framework and the principles for the coordination chemistry of FeMo‐co that are essential to the chemical mechanism of catalysis. The model advanced herein explains relevant experimental data.  相似文献   
45.
Coenzyme B12 initiates radical chemistry in two types of enzymatic reactions, the irreversible eliminases (e.g., diol dehydratases) and the reversible mutases (e.g., methylmalonyl‐CoA mutase). Whereas eliminases that use radical generators other than coenzyme B12 are known, no alternative coenzyme B12 independent mutases have been detected for substrates in which a methyl group is reversibly converted to a methylene radical. We predict that such mutases do not exist. However, coenzyme B12 independent pathways have been detected that circumvent the need for glutamate, β‐lysine or methylmalonyl‐CoA mutases by proceeding via different intermediates. In humans the methylcitrate cycle, which is ostensibly an alternative to the coenzyme B12 dependent methylmalonyl‐CoA pathway for propionate oxidation, is not used because it would interfere with the Krebs cycle and thereby compromise the high‐energy requirement of the nervous system. In the diol dehydratases the 5′‐deoxyadenosyl radical generated by homolysis of the carbon–cobalt bond of coenzyme B12 moves about 10 Å away from the cobalt atom in cob(II )alamin. The substrate and product radicals are generated at a similar distance from cob(II )alamin, which acts solely as spectator of the catalysis. In glutamate and methylmalonyl‐CoA mutases the 5′‐deoxyadenosyl radical remains within 3–4 Å of the cobalt atom, with the substrate and product radicals approximately 3 Å further away. It is suggested that cob(II )alamin acts as a conductor by stabilising both the 5′‐deoxyadenosyl radical and the product‐related methylene radicals.  相似文献   
46.
Summary. The reaction of 2-chloroisobutyrophenones and nitromethanide anion gives stereoselectively (E)-3-nitro allylic alcohols. The Gibbs free enthalpies of reaction in DMSO for carbanion addition, epoxide formation, and rearrangement to 3-nitro allylic alcohol, as elementary steps for the reaction, were estimated from corresponding neutral gas reactions and using a thermodynamical approach to the transfer of gaseous compounds to DMSO. A criterion for assigning the sign of affinity of liquid compounds to DMSO was developed on the basis of the Gibbs enthalpies of liquefaction. The information obtained on reaction rate and thermodynamic viability of the steps indicates that carbanion addition is the rate-determining step.In memory of Prof. Dr. M. Ballester, deceased on April 6, 2005  相似文献   
47.
The antioxidative effect of flavonols and their glycosides against the peroxidation of linoleic acid has been studied in homogeneous solution (tBuOH/H(2)O, 3:2) and in sodium dodecyl sulfate and cetyl trimethylammonium bromide micelles. The peroxidation was initiated thermally by the water-soluble initiator 2,2'-azobis(2-methylpropionamidine) dihydrochloride, and the reaction kinetics were studied by monitoring the formation of linoleic acid hydroperoxides. The synergistic antioxidant effect of the flavonols with alpha-tocopherol (vitamin E) was also studied by following the decay kinetics of alpha-tocopherol and the alpha-tocopheroxyl radical. Kinetic analysis of the antioxidative process demonstrates that the flavonols are effective antioxidants in solution and in micelles, either alone or in combination with alpha-tocopherol. The antioxidative action involves trapping the initiating radicals in solution or in the bulk-water phase of the micelles, trapping the propagating lipid peroxyl radicals on the surface of the micelles, and regenerating alpha-tocopherol by reducing the alpha-tocopheroxyl radical. It was found that the antioxidant activity of the flavonols and their glycosides depends significantly on the position and number of the hydroxy groups, the oxidation potential of the molecule, and the reaction medium. The flavonols bearing ortho-dihydroxy groups possess significantly higher antioxidative activity than those without such functionalities, and the glycosides are less active than their parent aglycones. The activity of the flavonols is higher in micelles than in solution, while the activity of alpha-tocopherol is lower in micelles than in solution. This is because the predominant factor for controlling the activity is the hydrogen-bonding interaction of the antioxidant with the micellar surface in the case of hydrophilic flavonols, while it is the inter- and intramicellar diffusion in the case of lipophilic alpha-tocopherol.  相似文献   
48.
Ring-closing metathesis (RCM) is the key step in a recently reported synthesis of salicylihalamide and related model compounds. Experimentally, the stereochemistry of the resulting cycloolefin (cis/trans) depends strongly on the substituents that are present in the diene substrate. To gain insight into the factors that govern the observed stereochemistry, density functional theory (DFT) calculations have been carried out for a simplified dichloro(2-propylidene)(imidazole-2-ylidene)ruthenium catalyst I, as well as for the real catalyst II with two mesityl substituents on the imidazole ring. Four model substrates are considered, which are closely related to the systems studied experimentally, and in each case, two pathways A and B are possible since the RCM reaction can be initiated by coordination of either of the two diene double bonds to the metal center. The first metathesis yields a carbene intermediate, which can then undergo a second metathesis by ring closure, metallacycle formation, and metallacycle cleavage to give the final cycloolefin complex. According to the DFT calculations, the stereochemistry is always determined in the second metathesis reaction, but the rate-determining step may be different for different catalysts, substrates, and pathways. The ancillary N-heterocyclic carbene ligand lies in the Ru-Cl-Cl plane in the simplified catalyst I, but is perpendicular to it in the real catalyst II, and this affects the relative energies of the relevant intermediates and transition states. Likewise, the introduction of methyl substituents in the diene substrates influences these relative energies appreciably. Good agreement with the experimentally observed stereochemistry is only found when using the real catalyst II and the largest model substrates in the DFT calculations.  相似文献   
49.
The aim of the present work was to identify and follow the main and side reactions involved in the ring dehydration of amic acid prepared from “bridged” dianhydrides whose central substituent is an electron acceptor or donor, and an aromatic diamine. Several isomeric structures may appear as a result of the opening reactivity and selectivity of anhydride groups towards the aromatic amine. Reaction mechanisms and kinetics were thus studied in solvent phase with HPLC and 13C-NMR and in solid molten phase by FTIR and solid 13C-NMR. The experimental conditions (liquid and solid) and the structure of the products (type of central substituent) affecting the mechanisms and kinetics of the reactions were noted. © 1993 John Wiley & Sons, Inc.  相似文献   
50.
The two isoelectronic bipyridyl derivatives, [2,2'-bipyridyl]-3,3'-diamine and [2,2'-bipyridyl]-3,3'-diol, are experimentally known to undergo very different excited-state double-proton-transfer processes, which result in fluorescence quantum yields that differ by four orders of magnitude. Herein, density functional theory (DFT), time-dependent DFT (TDDFT), and complete active space self-consistent field (CASSCF) calculations are used to study the double-proton-transfer processes in the ground and first singlet pi-->pi* excited state. The quantum-chemistry calculations indicate 1) the existence of only one energy minimum in the ground electronic state corresponding to reactants (thus avoiding the possibility of a fast fluorescent relaxation process from the photoproducts region), 2) an endoergic process of the complete double proton transfer, and 3) the presence of a conical intersection in the excited intermediate region of [2,2'-bipyridyl]-3,3'-diamine. These facts explain the very low fluorescence quantum yield in [2,2'-bipyridyl]-3,3'-diamine compared to [2,2'-bipyridyl]-3,3'-diol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号