首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   13篇
  国内免费   15篇
化学   44篇
晶体学   7篇
力学   27篇
数学   173篇
物理学   56篇
  2024年   1篇
  2023年   12篇
  2022年   8篇
  2021年   11篇
  2020年   14篇
  2019年   29篇
  2018年   38篇
  2017年   30篇
  2016年   32篇
  2015年   38篇
  2014年   39篇
  2013年   18篇
  2012年   19篇
  2011年   13篇
  2010年   2篇
  2009年   1篇
  1999年   1篇
  1979年   1篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
31.
王俊 《分子催化》2019,33(6):429-437
以不同端基烷基链长度的1.0G超支化大分子为桥联基,通过对其端基氨基进行催化功能改性,合成了系列具有不同桥联基长度的超支化PNP铬系催化剂。采用红外光谱(IR)、核磁共振氢谱(1H-NMR)、核磁共振磷谱(31P-NMR)、紫外光谱(UV)和质谱(MS)等表征方法证明合成催化剂的结构与理论结构相符。详细考察了溶剂种类、反应温度、Al/Cr摩尔比、反应压力、催化剂用量和催化剂结构对催化剂乙烯齐聚性能的影响。实验结果表明,当以甲苯为溶剂,甲基铝氧烷(MAO)为助催化剂时,超支化PNP铬系催化剂表现出良好的催化乙烯齐聚性能,产物以低碳烯烃为主。最佳条件下,催化活性最高可达到1.69×105g/mol Cr·h,己烯和辛烯的选择性为43.3%以上。相同聚合条件下,其催化活性随着端基烷基链长度的增加而下降。  相似文献   
32.
以航天器空间交会对接为背景,探讨了其网络环境下的鲁棒H?滤波问题。基于传统的C-W方程,重新构建网络环境下航天器交会对接系统的数学模型。选取时滞相关Lyapunov函数并结合自由权矩阵处理方法,给出网络化滤波误差系统渐近稳定且满足H?性能的充分条件,进而将滤波器的设计转化为受线性矩阵不等式约束的凸优化求解问题。仿真表明,最劣情况下最优的H?扰动抑制水平达到??1.4142,得到的相对位置和速度估计误差分别为0.07与0.02,证明该算法是可行且有效的。  相似文献   
33.
Y油田为缝洞型碳酸盐岩油藏,油藏复杂的地质特征决定了其开发模式有别于常规砂岩油藏.为了有效提高Y油田采收率,利用Eclipse数值模拟软件建立了地质模型,对水平井长度、射孔间距及酸压缝长等油藏产能影响因素与转注时机、注采比以及关井时间等注采参数进行了优化.结果认为:对于Y缝洞型碳酸盐岩油藏,水平井水平段长度为500m、射孔间距为20m或酸压规模为100m时,累计产油量可达到最大值;压力降至废弃压力时进行转注,可获得最大采收率;周期注采比等于1时,周期时效与累计增油量达到最大值;关井时间为8天时,采收率提高幅度最大.  相似文献   
34.
杨旭  赵立新  刘琳  张雨 《化学通报》2018,81(1):52-58
静电聚结技术具有快速、清洁、高效的特性,通常不需要添加化学药剂,不产生附加污染物,同重力沉降等方法相比,对于小粒径水滴或油水界面稳定的油水混合液适应性更强。本文简要介绍了静电聚结技术的聚结原理,总结了传统电脱水技术、管式静电预聚结技术和容器内置式静电聚结技术(VIEC)的研究和应用进展,对比分析了三类静电聚结技术的适用领域及技术特点,介绍了静电聚结与湍流/剪切流耦合技术的研究现状,最后对静电聚结技术的发展方向进行归纳和展望。  相似文献   
35.
为了确定低产低效影响因素及挖潜措施潜力,利用灰色关联度进行低产低效井影响因素分析,优选出影响产能的主要因素,结合多元线性回归方法与数理统计理论,建立了X油田油井压裂措施增油量预测模型和堵水井降水量预测模型.有机结合油井降水措施和增油措施的经济界限模型,可以准确预测低产低效井压裂增油潜力及堵水降水增油潜力,误差5%-10%以内,有效指导低效低产井再开发.  相似文献   
36.
准确地描述煤岩体压裂裂缝的形成与演化规律对煤层气井开采具有重要意义.本文以煤岩体压裂裂缝演化过程的微裂缝演化数目、裂缝尖端区域的径向应力与周向应力作为描述裂缝演化的特征指标,引入关联维数、最大Lyapunov指数和Ko1mogorov熵作为裂缝演化系统的混沌特征量,计算与描述煤岩体压裂裂缝的损伤演化过程.以黑龙江省某一煤岩开采区块岩体作为研究对象,计算分析煤岩体压裂裂缝的形成的混沌特征,为后续煤岩体压裂裂缝形成规律的研究提供了新的思路.  相似文献   
37.
渤海地区具有十分丰富的稠油资源,其油藏储层胶结疏松、渗透率高、非均质性严重并且边底水活跃,水驱采收率较低.因此,必须采取调剖、堵水和降黏组合技术措施来进行稠油开发,与其它稠油开发措施相比较,稠油乳化降黏技术具有操作简便和经济性好等优点,其中强化分散体系由于其良好的乳化降黏性以及简易的注入工艺受到石油科技工作者的高度重视.为使稠油乳化降黏技术尽快投入矿场试验,针对渤海普通稠油油藏开发实际需求,以油藏工程理论为指导,以数值模拟方法为技术手段,以正交试验原理安排实验,以A油田B1井组为试验平台,对比了不同开发方式对目标井组开发效果的影响.结果表明,单独注入强化分散体系4个月以上增油效果要好于单独调剖,而调剖与注强化分散体系联合作用效果要明显高于单独调剖与单独注强化分散体系之和,达到了"1+1"大于2的功效;高低浓度注入优于单一浓度段塞;水井调剖和油井堵水会明显增加强化分散体系增油有效期和增油量,推荐水井采取"调剖+强化分散体系高低浓度交替注入"组合措施,油井采取"堵水+强化分散体系吞吐"组合措施。  相似文献   
38.
换热器性能测试是换热器设计过程中的重要环节,对其结构优化及性能评估具有重要作用。针对传统的换热器性能测试系统存在试验周期长、组合方案少,自动化水平不高、可重用应用性较差等不足,文章基于工业控制计算机和C++ Builder软件平台开发了换热器性能试验测控与仿真系统。该系统实现了试验工况参数的控制与过程仿真、试验数据的采集记录与分析处理等各项操作的自动化。文章在简要介绍换热器性能测试系统硬件设计的基础上,具体结合系统硬件介绍了利用C++ Builder制作的换热器仿真实验测控系统的方法及过程,最后给出换热器性能测试仿真实验用户界面及仿真实验运行结果。试验结果表明,测控系统具有交互界面良好、使用方便,可靠性高等特点,能够较好地满足换热器性能测试的要求。  相似文献   
39.
准确及时的检测原油含水率对注水策略调整、原油开采能力评估、油井开发寿命预测等均具有重要意义。然而,当前我国大多数油田均已进入高含水的开发中晚期,含水率测量难度大且准确率不高。在此背景下,开展了高含水情况下利用近红外光谱进行原油含水率测量的研究。 首先介绍了目前原油含水率检测的常用方法,分析了它们的优劣。理论上,由于水的近红外光吸收带与原油中C-H键的吸收带有明显区别,根据Lambert-Beer吸收定律和吸光度线性叠加定律可知,不同含水率高含水原油近红外光谱会存在较强响应差异。为此,对高含水原油进行近红外光谱检测,建立原油含水率与近红外光谱响应间的非线性映射模型,可实现高含水原油含水率的精确测量。为了验证该方法的有效性,搭建了近红外光谱数据采集实验装置:采用白炽灯作为光源,经过光路调节成平行光后垂直射入样品池,用近红外光谱仪(海洋光学NIR512)采集光谱用于分析。其中,接收光谱仪带宽为900~1 700 nm,平均分成512个波段。光谱数据利用光谱仪配套软件储存在电脑中。样本采用相同厚度不同比例的油水混合物,样本含水率范围为70%~99%,共采集数据60组,每组重复3次取平均值。得到原始数据后,先进行原始数据预处理,以减少数据采集时来自高频随机噪音及温度不稳定、样本不均匀、基线漂移、光散射等不利因素的影响。分别选用了S-G滤波、一阶导数和S-G滤波+一阶导数作为数据预处理的方法,利用连续投影算法(SPA)对光谱数据进行降维,并利用偏最小二乘法(PLS)和多元线性回归(MLR)进行建模,模型精度通过计算均方根误差值(RMSE)和相关系数(r)来验证。对比发现,使用S-G滤波+一阶导数建立的模型RMSE值最小(RMSE=0.007 0,r=0.998 3)。使用SPA降维后的模型要优于全波段PLS模型(RMSE=0.083 3,r=0.920 6)与MLR模型(RMSE=0.099 9,r=0.967 1)。利用SPA提取出的31个特征波长建立的模型仅占全波段的6.05%,并获得了较好的精度。证明了利用光谱检测高含水原油含水率可行性,并且得到了满意的精度,为高含水原油的含水率检测提供了新的方法, 为进一步利用近红外光进行高含水原油的快速检测与在线监测提供参考。  相似文献   
40.
对亚甲蓝分光光度法(GB 7494—1987)测定水中阴离子表面活性剂含量进行了方法改进。以毒性相对较小的二氯甲烷取代三氯甲烷作为萃取剂,试管取代分液漏斗,利用振荡器进行萃取。结果表明:改进方法的最佳萃取时间为1.5 min,单个样品的分析时间在10 min以内;十二烷基苯磺酸钠标准曲线的线性范围在2.0 mg·L-1以内,检出限(3s/k)为0.029 7 mg·L-1;对十二烷基苯磺酸钠标准溶液重复测定6次,测定值的相对标准偏差(n=6)均小于9.0%;对空白样品进行加标回收试验,回收率为95.0%~99.1%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号