首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1990篇
  免费   377篇
  国内免费   559篇
化学   1200篇
晶体学   11篇
力学   155篇
综合类   19篇
数学   811篇
物理学   730篇
  2024年   5篇
  2023年   57篇
  2022年   89篇
  2021年   86篇
  2020年   121篇
  2019年   87篇
  2018年   83篇
  2017年   56篇
  2016年   55篇
  2015年   69篇
  2014年   127篇
  2013年   254篇
  2012年   255篇
  2011年   234篇
  2010年   194篇
  2009年   204篇
  2008年   169篇
  2007年   189篇
  2006年   181篇
  2005年   105篇
  2004年   51篇
  2003年   45篇
  2002年   51篇
  2001年   43篇
  2000年   21篇
  1999年   21篇
  1998年   10篇
  1997年   9篇
  1996年   12篇
  1995年   10篇
  1994年   13篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1985年   1篇
  1979年   1篇
  1959年   1篇
  1957年   3篇
  1936年   1篇
排序方式: 共有2926条查询结果,搜索用时 31 毫秒
31.
Developing a highly stable and dendrite-free zinc anode is essential to the commercial application of zinc metal batteries. However, the understanding of zinc dendrites formation mechanism is still insufficient. Herein, for the first time, we discover that the interfacial heterogeneous deposition induced by lattice defects and epitaxial growth limited by residual stress are intrinsic and critical causes for zinc dendrite formation. Therefore, an annealing reconstruction strategy was proposed to eliminate lattice defects and stresses in zinc crystals, which achieve dense epitaxial electrodeposition of zinc anode. The as-prepared annealed zinc anodes exhibit dendrite-free morphology and enhanced electrochemical cycling stability. This work first proves that lattice defects and residual stresses are also very important factors for epitaxial electrodeposition of zinc in addition to crystal orientation, which can provide a new mechanism for future researches on zinc anode modification.  相似文献   
32.
Rechargeable zinc metal batteries are promising for large-scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ-valerolactone-based electrolyte and nanocarbon-coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon-coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range.  相似文献   
33.
Photoelectrochemical(PEC) technology is considered to be a promising approach for solar-driven hydrogen production with zero emissions. Bismuth vanadate(BiVO_4) is a kind of photocatalytic material with strong photoactivity in the visible light region and appropriate band gap for PEC water splitting.However, the solar-to-hydrogen efficiency(STH) of BiVO_4 is far away from the 10% target needed for practical application due to its poor charge separation ability. Therefore, this review attempts to summarize the strategies for improving the photocurrent density and especially hydrogen production of BiVO_4 materials through PEC techniques in the last three years, such as doping nonmetal and metal elements, depositing noble metals, constructing heterojunctions, coupling with carbon and metalorganic framework(MOF) materials to further enhance the PEC performance of BiVO_4 photoanode. This review aims to serve as a general guideline to fabricate highly efficient BiVO_4-based materials for PEC water splitting.  相似文献   
34.
李超  乔瑶雨  李禹红  闻静  何乃普  黎白钰 《化学进展》2021,33(11):1964-1971
金属有机框架(MOFs)具有大量的孔隙结构和活性位点,在气体吸附、催化、医疗等领域均发挥了巨大的作用。MOFs是晶体粉末,具有脆性较大、在水中易分解和不易回收等缺点,从而限制了其应用。通过MOFs与柔性高分子的复合,特别是与水凝胶的复合,极大地改善了复合材料的柔顺性、可回收和可加工性等特性,进一步拓宽了MOFs的应用领域。本文详细阐述了基于水凝胶MOFs原位生成法、MOFs /水凝胶同时生成法和水凝胶包裹MOFs法等三种不同方法制备MOFs/水凝胶复合材料的研究进展,并对上述三种制备方法的特点及其产物特征进行了总结,进一步归纳了复合材料在生物医药、催化、废水处理和气体吸附等领域的应用。最后,对MOFs/水凝胶复合材料制备方法的改进和复合材料应用前景进行了深入讨论和展望。  相似文献   
35.
Ti3C2TX MXene was synthesized by exfoliating pristine Ti3AlC2 phase with hydrofluoric acid. The simple methods of mechanical mixing and drop-casting of Ti3C2TX and MWCNTs were carried out to prepare sensing electrode of Ti3C2TX/MWCNTs/GCE. The composite and topography, especially the surface functional groups of Ti3C2TX/MWCNTs were analyzed by XRD, SEM, FTIR, XPS, and Raman spectrum. The results turned out that Ti3C2TX was characteristic by accordion-like 2D nanostructure with the surfaces terminated with −OH, −F, and =O. When combining with acid pretreated, the interaction between the functional groups of Ti3C2TX and MWCNTs facilitated the convenience and reproducibility of the robust modified electrodes and could make Ti3C2TX/MWCNTs/GCE possess good synergistic catalytic acceleration by increasing the electron transfer efficiency as well as adsorption and aggregation of MOP analyte onto the electrode surface. Versatile electrochemical measurements of CV, DPV and EIS were used to investigate the electrochemical performance of Ti3C2TX/MWCNTs/GCE sensing platform. The linear detection range is 0.01–100 μM with the limit of detection of 0.0092 μM (S/N=3). The sensor has good stability, repeatability, reproducibility and anti-interference. In the detection of serum and urine samples, it has a good recovery rate.  相似文献   
36.
Deep eutectic solvents (DESs) are green organic solvents that have broad prospects in the extraction of effective components of traditional Chinese medicine. This work employed the quantitative analysis of multi-components by a single marker (QAMS) method to quantitatively determine the six effective components of glycyrrhizic acid, liquiritin, isoliquiritin apioside, liquiritigenin, isoliquiritin, and glycyrrhetinic acid in Glycyrrhiza uralensis, which was used for comprehensive evaluation of the optimal extraction process by DESs. First, Choline Chloride: Lactic Acid (ChCl-LA, molar ratio 1:1) was selected as the most suitable DES by comparing the extraction yields of different DESs. Second, the extraction protocol was investigated by extraction time, extraction temperature, liquid-to-material ratio, molar ratio, and ultrasonic power. The Box–Behnken design (BBD) combined with response surface methodology (RSM) was used to investigate the optimal DES conditions. The result showed that the best DES system was 1.3-butanediol/choline chloride (ChCl) with the molar ratio of 4:1. The optimal extraction process of licorice was 20 mL/g, the water content was 30%, and the extraction time was 41 min. The comprehensive impact factor (z) was 0.92. At the same time, it was found that the microstructure of the residue extracted by the eutectic solvent was more severely damaged than the residue after the traditional solvent extraction through observation under an electron microscope. The DES has the characteristics of high efficiency and rapidity as an extraction solution.  相似文献   
37.
Colorimetric sensing strategies as a powerful point-of-care testing(POCT) tool have attracted significant interest in various chem/biosensing applications.Taking the excellent bare-eye-detectable signaling feature,nanozymes-based colorimetric sensors enable more potential applications and have been a new forefront in the colorimetric POCT analysis toward different target analytes.However,the low catalytic activity of nanozymes in most cases limits their practical application.Recent efforts demonstrate that the aggregation-induced nanozymes provide a general means to modulate nanozymes activity and enhance colorimetric sensing performances of some nanozymes-based colorimetric sensors.But there are few reports are explored to discuss and review such aggregation-induced nanozymes and their colorimetric sensing applications.To highlight the advances and progress in aggregation-induced nanozymes based colorimetric assays,we herein summary the fundamentals,classify and applications of this newlydeveloping field,focusing on the aggregation-induced activity enhancement of nanozymes(AIAEnanozymes) with a significant "signal-on" feature and aggregation-induced activity inhibition of nanozymes(AIAI-nanozymes) with a dramatical "signal-of" characteristics.Finally,we also propose the current challenges and the future prospects on both AIAE-nanozymes and AIAI-nanozymes.  相似文献   
38.
Zhang  Fangyuan  Li  Anling  Zhao  Wuyun 《Cellulose (London, England)》2021,28(13):8705-8718

Agricultural paper mulch is an indispensable part of modern agriculture. It had the functions of heat preservation, moisture preservation, insect resistance, disease prevention, and weed growth inhibition. In order to extend the service life of the paper mulch, we use the solution immersion method to modify the surface of the paper mulch. A super-hydrophobic paper mulch is mainly prepared by using hydrophobic silica. The static contact angle of the super-hydrophobic paper mulch with water is 160.6°. The super-hydrophobic paper mulch samples were immersed in acid solution (pH?=?4.6 H2SO4) and alkaline solution (pH?=?8.5 NaOH). The main instruments are contact angle tester, tensile testing machine and high-speed camera. The hydrophobic properties, mechanical properties and rebound properties of the two kinds of paper mulches were compared. The results showed that the tensile strength and droplet bounce height of the superhydrophobic paper mulch decreased after being soaked in acid or alkaline solution for 48 h. The mass loss rate of paper mulch was more significant in acid solution, but its contact angle was still greater than 145°, and it had good bounce performance. After observing the microscopic morphology of its surface, it was found that silica had a micro-rough structure on the surface of the paper mulch. The method was simple and environmentally friendly, and can alleviate the problem of poor acid and alkali corrosion resistance of the paper mulch, and had extraordinary significance for environmental protection.

  相似文献   
39.
亚表面引发聚合是一种用于制备共价嵌入型聚合物刷的新型改性策略. 该方法在发展高稳定性聚合物刷功能化表界面材料方面具有显著的优势. 本工作利用亚表面引发原子转移自由基聚合(sSI-ATRP)对静电纺丝聚丙烯腈(PAN)基纳米纤维膜进行亚表面改性, 通过接枝聚N-异丙基丙烯酰胺(PNIPAM)制备了温度响应型纳米纤维油水分离膜(PAN-sg-PNIPAM). 当温度低于低临界溶解温度(LCST)时, PNIPAM链与水分子之间的强氢键作用使得聚合物链完全伸展, 分离膜表面亲水且对油滴具有非常低的粘附力, 对油水乳液具有非常高的分离效率(达98.7%); 当温度高于LCST时, PNIPAM链失水收缩, 膜表面变得更加疏水且对油滴的粘附力显著增加, 其油水乳液分离效率显著降低, 仅为9.1%. 此外, 由于共价嵌入聚合物刷的高稳定性, 该分离膜在4 kPa压力下, 20 ℃和45 ℃之间可逆切换10个循环后, 仍能保持非常稳定的渗透通量. 本研究为发展高稳定性的智能型油水分离膜提供了一种新方法.  相似文献   
40.
To study the influence of different concentrations of zinc oxide (ZnO)/silicon dioxide (SiO2) composite coating on hydrophobic property and mechanical stability of paper mulch film, three kinds of ZnO/SiO2 composite coating paper mulch films (2%, 4%, 6%) with different coating substance contents were prepared by brush coating method. Through particle size analysis, contact angle, rolling angle and mechanical stability test, combined with scanning electron microscope, three-dimensional morphology and roughness measuring instrument, the optimal concentration of ZnO/SiO2 composite coated paper mulch film was screened out. Through acid-base salt corrosion test, silver mirror reaction and surface self-cleaning, the optimal concentration of composite coated paper mulch film was compared with the original paper mulch film to prove its excellent chemical stability and hydrophobicity. The results show that the paper mulch film with 4% coating material has excellent hydrophobicity and mechanical stability, can effectively reduce the surface roughness of paper mulch film, and has remarkable effects in resisting acid, alkali and salt and self-cleaning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号