首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10564篇
  免费   541篇
  国内免费   2049篇
化学   9778篇
晶体学   171篇
力学   130篇
综合类   90篇
数学   1339篇
物理学   1646篇
  2023年   112篇
  2022年   154篇
  2021年   221篇
  2020年   244篇
  2019年   252篇
  2018年   224篇
  2017年   280篇
  2016年   298篇
  2015年   247篇
  2014年   319篇
  2013年   816篇
  2012年   573篇
  2011年   720篇
  2010年   613篇
  2009年   814篇
  2008年   791篇
  2007年   751篇
  2006年   706篇
  2005年   641篇
  2004年   617篇
  2003年   469篇
  2002年   411篇
  2001年   315篇
  2000年   317篇
  1999年   237篇
  1998年   197篇
  1997年   221篇
  1996年   197篇
  1995年   229篇
  1994年   205篇
  1993年   173篇
  1992年   157篇
  1991年   115篇
  1990年   87篇
  1989年   88篇
  1988年   56篇
  1987年   30篇
  1986年   45篇
  1985年   23篇
  1984年   27篇
  1983年   11篇
  1982年   20篇
  1981年   29篇
  1980年   19篇
  1979年   20篇
  1978年   18篇
  1977年   7篇
  1976年   12篇
  1974年   7篇
  1972年   5篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
31.
Selective hydrogenation is a vital class of reaction. Various unsaturated functional groups in organic compounds, such as aromatic rings, alkynyl (C≡C), carbonyl (C=O), nitro (-NO2), and alkenyl (C=C) groups, are typical targets in selective hydrogenation. Therefore, selectivity is a key indicator of the efficiency of a designed hydrogenation reaction. 5-(Hydroxymethyl)furfural (HMF) is an important platform compound in the context of biomass conversion, and recently, the hydrogenation of HMF to produce fuels and other valuable chemicals has received significant attention. Controlling the selectivity of HMF hydrogenation is paramount because of the different reducible functional groups (C=O, C-OH, and C=C) in HMF. Moreover, the exploration of new routes for hydrogenating HMF to valuable chemicals is becoming attractive. 5-Methylfurfural (MF) is also an important organic compound; thus, the selective hydrogenation of HMF to MF is an essential synthetic route. However, this reaction has challenging thermodynamic and kinetic aspects, making it difficult to realize. Herein, we propose a strategy to design a highly efficient catalytic system for selective hydrogenation by exploiting the synergy between steric hindrance and hydrogen spillover. The design and preparation of the Pt@PVP/Nb2O5 catalyst (PVP = polyvinyl pyrrolidone; Nb2O5 = niobium(V) oxide) were also conducted. Surprisingly, HMF could be converted to MF with 92% selectivity at 100% HMF conversion. The reaction pathway was revealed through the combination of control experiments and density functional theory calculations. Although PVP blocked HMF from accessing the surface of Pt, hydrogen (H2) could be activated on the surface of Pt due to its small molecular size, and the activated H2 could migrate to the surface of Nb2O5 through a phenomenon called H2 spillover. The Lewis acidic surface of Nb2O5 could not adsorb the C=O group but could adsorb and activate the C-OH group of HMF; therefore, when HMF was adsorbed on Nb2O5, the C-OH groups were hydrogenated by the spilled over H2 to form MF. The high selectivity of this reaction was realized because of the unique combination of steric effects, hydrogen spillover, and tuning of the electronic states of the Pt and Nb2O5 surfaces. This new route for producing MF has great potential for practical application owing to its discovered advantages. We believe that this novel strategy can be used to design catalysts for other selective hydrogenation reactions. Furthermore, this study demonstrates a significant breakthrough in selective hydrogenation, which will be of interest to researchers working on the utilization of biomass, organic synthesis, catalysis, and other related fields.   相似文献   
32.
Dimethyl furan-2, 5-dicarboxylate (DMFDCA) is a valuable biomass-derived chemical that is an ideal alternative to fossil-derived terephthalic acid as a monomer for polymers. The one-step oxidation of 5-hydroxymethylfurfural (HMF) to DMFDCA is of practical significance. It not only shortens the reaction pathway but also avoids the separation process of intermediates; thus, reducing cost. In this work, non-noble bimetallic catalysts supported on N-doped porous carbon (CoMn@NC) were synthesized via a one-step co-pyrolysis procedure using different pyrolysis temperatures and proportions of metal precursors and additives. We employed the prepared CoMn@NC catalysts in the aerobic oxidation of HMF under mild reaction conditions to obtain DMFDCA. High-yield DMFDCA was obtained by screening the prepared catalysts and optimizing the reaction conditions, including the strength and amount of the base, as well as the reaction temperature. The optimized yield of DMFDCA was 85% over the Co3Mn2@NC-800 catalyst after 12 h at 50 ℃ using ambient-pressure oxygen. The physicochemical properties of the catalysts were determined using a variety of characterization techniques, the factors affecting the performance of each catalyst were investigated, and the relationship between the physicochemical properties and performance of the prepared catalysts was elucidated. A porous structure with a high surface area had a positive effect on mass transfer efficiency. Cobalt nanoparticles (NPs) and atomically dispersed Mn were coordinated to N-doped carbon to form M―Nx (where M = Co or Mn). Based on the Mott-Schottky effect, there was significant electron transfer between each metal and the N-doped carbon, additionally, the metal NPs supplied electrons to the carbon atoms. The electron-deficient metal site in the pyridinic N-rich carbon was beneficial for the activation of HMF and oxygen. The activation of oxygen produced reactive oxygen species (such as superoxide radical anions) to ensure high selectivity to DMFDCA through dehydrogenative oxidation of the hemiacetal intermediate and hydroxymethyl group of 5-hydroxymethyl-2-methyl-furoate. The existence of disordered and defective carbons increased the number of active sites. Subsequently, we performed a series of control experiments. Based on our current experimental results and previous studies, we propose a simple mechanism for the aerobic oxidation of HMF to DMFDCA. The catalyst was stable, its performance decreased slightly after two cycles, and it was tolerant to SCN ions and resistant against N or S poisoning. Furthermore, the use of this catalytic system can be expanded to various substituted aromatic alcohols, such as benzyl alcohols with different substituents, furfuryl alcohol, and heterocyclic alcohols. Simultaneously, the product type was further extended from methyl esters to ethyl esters with a high yield when the substrate reacted with ethanol. In conclusion, this catalytic system can be applied in the production of carboxylic esters for polymers.  相似文献   
33.
《Mendeleev Communications》2023,33(2):231-233
A short simple synthesis of spinazarins (2,3-dihydroxy-naphthazarins or 2,3,5,8-tetrahydroxy-1,4-naphtho-quinones) from available 2,3-dichloronaphthazarin derivatives involves replacement of chlorine atoms with azido groups followed by their acidic hydrolysis. The procedure can be used for the preparative synthesis of natural biologically active spinazarins and their analogues.  相似文献   
34.
《Mendeleev Communications》2023,33(3):323-324
A novel spirocyclic scaffold of 7'H-spiro[azetidine-3,5'-furo[3,4-d]pyrimidine] chemotype was synthesized in N-Boc-protected form. However, the scaffold was revealed to be unstable to storage when deprotected. The solution was found in the brief removal of the Boc protecting group and rapid acylation of the liberated NH-azetidine with a carboxylic acid imidazolide.  相似文献   
35.
Artificial water channels (AWCs) that selectively transport water and reject ions through bilayer membranes have potential to act as synthetic Aquaporins (AQPs). AWCs can have a similar osmotic permeability, better stability, with simpler manufacture on a larger-scale and have higher functional density and surface permeability when inserted into the membrane. Here, we report the screening of combinatorial libraries of symmetrical and unsymmetrical rim-functionalized PAs A – D that are able to transport ca. 107–108 water molecules/s/channel, which is within 1 order of magnitude of AQPs’ and show total ion and proton rejection. Among the four channels, C and D are 3–4 times more water permeable than A and B when inserted in bilayer membranes. The binary combinations of A – D with different molar ratios could be expressed as an independent (linear ABA ), a recessive (inhibition AB , AC , DB , ACA ), or a dominant (amplification, DBD ) behavior of the water net permeation events.  相似文献   
36.
A Friedel–Crafts reaction of indolizines with 2-aryl-3H-indol-3-ones catalyzed by B(C6F5)3 is described. This protocol gives access to indolizine derivatives that are valuable building blocks in synthetic and pharmaceutical chemistry. The reaction proceeds under mild conditions, affording various C2-quaternary indolin-3-ones based on indolizine with high yields and regioselectivities. Moreover, the synthetic transformations of the target products were realized by N-methylation and trifluoromethane sulfonation.  相似文献   
37.
Sheet-like ZSM-5 has been regarded as a promising material for catalytic applications due to its diffusion superiority. However, it still remains a challenge to obtain a desirable sheet-like morphology because of the complex synthesis process of zeolites. Here, a facile strategy for synthesizing sheet-like ZSM-5 is developed by only adding ethanol as zeolite growth modifier in the synthesis gel. It is thought that ethanol might be preferentially absorbed on the {010} surface of zeolite crystals, interact with the exposed silicon hydroxyl groups on the crystal {010} facet, and suppress the growth of b axis, resulting in the sheet-like shape. Through finely tunning synthesis parameters, sheet-like ZSM-5 crystals with thin b-axis thickness of 90 nm and different aspect ratios could be obtained. Owing to its shorter diffusion path and optimized acidity, sheet-like ZSM-5 exhibits better catalytic performance than conventional ZSM-5 in the alkylation of benzene with ethanol.  相似文献   
38.
Branched poly(ethylene imine) (bPEI) is frequently used in RNA interference (RNAi) experiments as a cationic polymer for the delivery of small interfering RNA (siRNA) because of its ability to form stable polyplexes that facilitate siRNA uptake. However, the use of bPEI in gene delivery is limited by its cytotoxicity and a need for target specificity. In this work, bPEI is modified with d- fructose to improve biocompatibility and target breast cancer cells through the overexpressed GLUT5 transporter. Fructose-substituted bPEI (Fru−bPEI) is accessible in three steps starting from commercially available protected fructopyranosides and bPEI. Several polymers with varying molecular weights, degrees of substitution, and linker positions on d- fructose (C1 and C3) are synthesized and characterized with NMR spectroscopy, size exclusion chromatography, and elemental analysis. In vitro biological screenings show significantly reduced cytotoxicity of 10 kDa bPEI after fructose functionalization, specific uptake of siRNA polyplexes, and targeted knockdown of green fluorescent protein (GFP) in triple-negative breast cancer cells (MDA-MB-231) compared to noncancer cells (HEK293T).  相似文献   
39.
In this study, ZnO-Red Ochre nanocomposite was green synthesized by Rosa Damascena (RD) extract (RDZRONCs). Proton Induced X-ray Emission microanalysis (Micro-PIXE) and X-ray diffraction (XRD) pattern confirmed the presence of hematite (Fe2O3), and quartz (SiO2) mineral phases in the Red Ochre (RO) nanoclay. In addition, the XRD pattern shows the ZnO, ZnFe2O4, SiO2, Fe2O3, and Si phases in the RDZRONCs that were green synthesized with natural RD extract and RO. The RDZRONCs were used to modify the carbon paste electrode (CPE) for the electrochemical determination of the anticancer drug 5-fluorouracil (5-FU). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were employed to investigate the surface behavior of modified CPE (RDZRONCs/CPE). The electrochemical behavior of 5-FU at the RDZRONCs/CPE was exanimated by CV, differential pulse voltammetry (DPV), chronoamperometry (CA), and chronocoulometry (CC). Based on the DPV technique, a linear relationship between peak current and concentration of 5-FU was obtained in the dynamic range of 0.05–140.0 μM and with a detection limit equal to 0.0016 μM. The selectivity of RDZRONCs/CPE for 5-FU was studied in the presence of different inorganic and organic species. Also, the content of 5-FU was measured in real samples by RDZRONCs/CPE.  相似文献   
40.
以硫酸镉、叠氮化钠和4-氰基吡啶或3-氰基吡啶为反应物,在水热条件下,通过原位反应分别得到了2个基于硫酸根离子和5-(4-吡啶基)四氮唑(4-Hptz)或5-(3-吡啶基)四氮唑(3-Hptz)配体的,具有三维层-柱状框架结构的无机-有机杂化材料,即[Cd2(H2O)(OH)(SO4)(4-ptz)]n(1)和[Cd2(OH)(SO4)(3-ptz)]n(2)。通过元素分析、红外光谱、热重分析以及单晶和粉末X-射线衍射分析对它们的组成和结构进行了表征。在配合物12的结构中,每个镉(Ⅱ)离子的配位数均为6,处于扭曲的八面体配位环境中,SO42-和OH-阴离子连接镉(Ⅱ)离子扩展形成碱式硫酸镉的二维无机阳离子层结构[Cd2(H2O)(OH)(SO4)]nn+(1)或[Cd2(OH)(SO4)]nn+(2),相邻的二维无机阳离子层间再通过4-ptz-(1)或3-ptz-(2)进一步柱连接,形成三维层-柱状结构的无机-有机杂化框架结构。室温下的固体荧光实验表明,在350nm的光激发下,配合物12分别在481和489nm处出现强烈的荧光发射。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号