首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   39篇
  国内免费   18篇
化学   27篇
晶体学   1篇
力学   68篇
综合类   3篇
数学   12篇
物理学   150篇
  2024年   2篇
  2023年   15篇
  2022年   17篇
  2021年   29篇
  2020年   9篇
  2019年   9篇
  2018年   2篇
  2017年   6篇
  2016年   7篇
  2015年   9篇
  2014年   12篇
  2013年   6篇
  2012年   9篇
  2011年   13篇
  2010年   9篇
  2009年   10篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   14篇
  2004年   8篇
  2003年   11篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1983年   2篇
排序方式: 共有261条查询结果,搜索用时 361 毫秒
251.
本文从微胶囊壁材出发,重点介绍了石蜡基/高分子、无机和高分子-无机杂化壳微胶囊的制备及应用,并总结了上述微胶囊的优势和不足。其中石蜡基/高分子壳微胶囊的壁材包括三聚氰胺-甲醛树脂、脲醛树脂、三聚氰胺-甲醛-尿素树脂、聚氨酯树脂、丙烯酸树脂等,石蜡基/无机壳微胶囊的壁材包括二氧化硅、二氧化钛、碳酸钙、氧化锌等,石蜡基/高分子-无机杂化壳的壁材包括三聚氰胺-甲醛树脂、三聚氰胺-甲醛-尿素树脂、丙烯酸树脂等与二氧化钛、二氧化硅等无机粒子复合。并对石蜡基微胶囊相变材料的未来发展方向和应用前景进行展望,以期为今后研究提供借鉴。  相似文献   
252.
增材制造金属材料的疲劳损伤及寿命预测问题是当前研究的热点.论文以增材制造AlSi10Mg为典型应用对象,采用数据驱动方法开展疲劳寿命预测,考虑到其疲劳试验数据有限,采用经过试验验证的可靠的理论模型和数值计算方法来获取足够的疲劳数据,以弥补试验数据的不足.首先,提出了基于缺陷特征参数的疲劳损伤模型,其次,建立了理论模型的数值实现方法,并将数值计算结果与试验结果进行对比,验证了所提方法的可靠性.然后,开展数据驱动模型的训练与预测,采用K最近邻的数据驱动算法预测了增材制造AlSi10Mg的疲劳寿命,最后,深入分析了疲劳寿命随增材制造内部缺陷、疲劳载荷的变化规律,研究了数据驱动模型的训练数据量及模型参数对预测精度的影响.  相似文献   
253.
近年来, 高温超导磁体由于载流能力高、 磁场强等优点在磁悬浮列车、 医疗成像、 飞轮储能器等系统具有广阔的应用前景. 在这些应用中, 工作面上磁场越强, 系统的性能越优. 高温超导块材能够俘获强磁场, 但因为尺寸的限制, 其磁场发散区域小, 在大气隙条件下工作面区域磁场弱. 相比而言, 高温超导线圈的尺寸不受限制, 但其磁场会随着口径的增大而降低. 因此, 本文将高温超导线圈和块材结合, 提出了一种结构紧凑、 口径大、 磁场强的混合高温超导磁体. 同时, 利用有限元仿真软件建立混合高温超导磁体的二维轴对称自洽模型并进行了实验验证, 仿真计算了混合高温超导磁体的磁场分布以及不同温度下的临界电流和最大磁场强度. 结果表明, 混合高温超导磁体可显著增加工作面的磁场, 相比于独立的高温超导线圈和高温超导块材最大磁场分别最小提升了102% 和12% .另外, 混合高温超导磁体工作面上的有效磁通相比于高温超导块材也提高了.  相似文献   
254.
增材制造是一种先进的金属制备方法,能够极大满足个性化的制造需求。制造过程中由于工艺原因可能会出现裂纹等典型缺陷。涡流无损检测对于增材制造结构件的裂纹缺陷是一种潜在的有效评价手段。在增材制造过程中,构件残余热会影响检测效果,需要开发抑制温度影响的涡流信号处理方法。基于以上背景,本研究开展了以下工作:(1)对涡流检测信号受温度影响的机理进行了详细分析,包括涡流检测信号温漂的影响因素以及这些因素随温度的变化规律。(2)基于数值计算验证了涡流检测信号的温漂规律。(3)搭建了涡流检测实验平台,通过该平台进行实验发现,待测导体温度越高缺陷信号越小。(4)针对自激自检探头信号温漂难题,设计了双探头差动补偿形式,开发了涡流信号间接差分信号处理方法。(5)使用上述差动补偿形式和信号处理方法,达到了减弱涡流信号漂移、提高涡流信号信噪比的目的。  相似文献   
255.
民用飞机复材壁板与金属壁板的连接是机身结构设计的重要研究内容,如何将复材帽形长桁和金属Z形/2形长桁连接是研究的重点和难点。本研究提出了一种新型混合连接结构,同时考虑了预埋缺陷和BVID损伤对试验件的影响。通过试验、数值仿真等分析方法研究了混合连接结构的静强度特性,详细分析了试验件的受力情况、失效模式以及破坏位置,很好的解决了复材帽形长桁和金属Z形/2形长桁连接载荷传递问题。研究结果表明:该混合连接结构满足民用飞机结构与强度的设计要求,预埋缺陷和BVID损伤对试验件的破坏载荷和破坏模式无影响。以上研究结果为型号飞机的研制和发展提供重要的指导作用。  相似文献   
256.
为研发轻质高效的能量吸收装置,提出了基于多边形截面与星形截面混合设计的星形混合多胞管。采用数值模拟方法研究了星形混合多胞管在轴向加载条件下的吸能特性和变形模式,并结合简化超折单元理论推导了该管的平均碰撞力理论公式。研究结果表明,星形混合多胞管的多边形截面与星形截面之间产生了协同效应,额外吸收了更多的冲击动能:当多边形边数N=6时,混合截面的协同性最好;当N=8时,该管的能量吸收效率最高。在此基础上,进一步开展了几何参数分析,发现壁厚对于星形混合多胞管的耐撞性有显著的影响,碰撞力水平随着壁厚的增加而线性增长。此外,星形角度的变化对耐撞性的影响相对较小,碰撞荷载效率和比吸能随着星形角度的增加表现出先增大后减小;当星形角度α=120°时,该管拥有最佳的耐撞性。  相似文献   
257.
绝热剪切失效是增材制造金属材料在高应变率载荷下的重要失效方式。使用电火花从冷金属过渡电弧增材技术制备的316L不锈钢单壁上沿着制造方向和扫描方向割出动态加载圆柱试样(尺寸为?4 mm×4 mm)。采用分离式霍普金森杆对增材制造316L试样在应变率4 000到6 000 s-1下加载至绝热剪切状态,研究了其动态剪切变形行为特别是剪切带内微观组织特征结构。不同应变率动态加载下,电弧增材制造316L不锈钢的动态应力首先由于应变硬化而增大,随后绝热剪切热软化与应变硬化的平衡导致了动态变形最后阶段的应力平台效应。绝热剪切带中亚晶经历了动态再结晶过程,具有与基体完全不同的等轴晶形貌,晶粒尺寸大约在200~300 nm。动态剪切复杂热力过程导致剪切带内的亚晶形成了双重织构,既有与基体一致的沿着压缩方向的<110>丝织构,也有与宏观剪切方向相关的晶体学织构,即(111)沿着宏观剪切面,<112>沿着宏观剪切方向。不同剪切带的等轴亚晶都有大量残余Σ3 60°晶界,同时存在与基体相同的孪生织构,可以证明孪生再结晶是绝热剪切带内亚晶主要的动态再结晶机制。宏观绝热...  相似文献   
258.
采用2mm宽REBCO超导带材,通过堆叠、圆化和拉拔等成型技术制备了多种规格的堆叠型股线,并利用试验手段研究了不同结构股线的横向抗压性能。经研究发现,超导股线在带面方向的抗压性能最好,侧面方向最差。而对比测试表明,股线带材和铜带的分布对其抗压性能影响不大,增加包壳壁厚可提高股线的抗压性能,而增大股线直径,可部分改善抗压能力,但股线扭转则会降低其抗压效果。  相似文献   
259.
采用熔融织构生长工艺结合冷籽晶法,通过调整最高熔化温度,成功制备出直径53mm的GdBCO单畴超导块材.不同高温下淬火坯体的XRD图谱表明,提高最高熔化温度对Gd123相的充分熔解和大单畴的生长具有重要意义.最高熔化温度对块材的磁悬浮性能有重要影响,最高温度偏低不利于熔体中气体排出,制成的单畴存在大量孔洞,使磁悬浮力下降;适当提高最高熔化温度,可减少单畴内部的孔洞,使材料致密从而提高磁悬浮力.  相似文献   
260.
双蒙皮夹层结构是航空航天装备中的特殊承力结构,其典型代表为发动机尾喷管中的同步环构件。近年来,增材制造技术为该类薄壁结构的创新型设计提供了有利条件。但增材制造有其特殊的工艺要求,基于传统拓扑优化得到的设计结果往往存在大量的悬空区域,无法直接应用于增材制造工艺。因此,需要在优化设计阶段统筹考虑结构的力学性能和自支撑工艺约束。针对上述问题,本文提出了一种面向增材制造的双蒙皮夹层薄壁结构加筋拓扑优化方法,可在一次优化中同时得到优化的加筋布局和非均匀点阵分布,从而解决悬空结构的支撑问题,确保优化结果的工艺可达性。为了平衡计算成本和分析精度,本文采用渐进均匀化方法来求解不同类型单胞等效弹性性能,以适应不同复杂单胞构型。基于上述方法,本文给出了某发动机同步环结构的拓扑优化算例,结果表明,本文优化设计方法可以实现双蒙皮夹层结构中夹层加筋和点阵的共同优化,为航空航天装备中发动机同步环结构轻量化设计提供了思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号