首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   16篇
  国内免费   1篇
化学   44篇
晶体学   1篇
力学   19篇
数学   155篇
物理学   19篇
  2022年   3篇
  2021年   8篇
  2020年   8篇
  2019年   5篇
  2018年   4篇
  2017年   11篇
  2016年   15篇
  2015年   9篇
  2014年   14篇
  2013年   32篇
  2012年   24篇
  2011年   17篇
  2010年   19篇
  2009年   22篇
  2008年   15篇
  2007年   11篇
  2006年   7篇
  2005年   6篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有238条查询结果,搜索用时 453 毫秒
231.
A numerical technique based on the finite difference and collocation methods is presented for the solution of generalized Kuramoto-Sivashinsky (GKS) equation. The derivative matrices between any two families of B-spline functions are presented and are utilized to reduce the solution of GKS equation to the solution of linear algebraic equations. Numerical simulations for five test examples have been demonstrated to validate the technique proposed in the current paper. It is found that the simulating results are in good agreement with the exact solutions.  相似文献   
232.

Abstract  

Nanocrystalline magnesium oxide with high specific surface area has been used as a novel and efficient catalyst for an improved and rapid synthesis of biologically active 2,4,5-trisubstituted imidazoles, by three-component, one-pot condensation of 1,2-diketones and aryl aldehydes, in excellent yields under solvent-free and conventional heating conditions. The method has several advantages, for example excellent yields, shorter reaction time, and use of a non-toxic and recyclable catalyst.  相似文献   
233.
The present work is motivated by the desire to obtain numerical solution to a quasilinear parabolic inverse problem. The solution is presented by means of the method of lines. Method of lines is an alternative computational approach which involves making an approximation to the space derivatives and reducing the problem to a system of ordinary differential equations in the variable time, then a proper initial value problem solver can be used to solve this ordinary differential equations system. Some numerical examples and also comparison with finite difference methods will be investigated to confirm the efficiency of this procedure.  相似文献   
234.
Computing a function f(A) of an n-by-n matrix A is a frequently occurring problem in control theory and other applications. In this paper we introduce an effective approach for the determination of matrix function f(A). We propose a new technique which is based on the extension of Newton divided difference and the interpolation technique of Hermite and using the eigenvalues of the given matrix A. The new algorithm is tested on several problems to show the efficiency of the presented method. Finally, the application of this method in control theory is highlighted.  相似文献   
235.
An inverse problem concerning diffusion equation with a source control parameter is investigated. The approximation of the problem is based on the Legendre multiscaling basis. The properties of Legendre multiscaling functions are first presented. These properties together with Galerkin method are then utilized to reduce the inverse problem to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   
236.
The purpose of this study is to implement Adomian–Pade (Modified Adomian–Pade) technique, which is a combination of Adomian decomposition method (Modified Adomian decomposition method) and Pade approximation, for solving linear and nonlinear systems of Volterra functional equations. The results obtained by using Adomian–Pade (Modified Adomian–Pade) technique, are compared to those obtained by using Adomian decomposition method (Modified Adomian decomposition method) alone. The numerical results, demonstrate that ADM–PADE (MADM–PADE) technique, gives the approximate solution with faster convergence rate and higher accuracy than using the standard ADM (MADM).  相似文献   
237.
In this article we propose a numerical scheme to solve the pantograph equation. The method consists of expanding the required approximate solution as the elements of the shifted Chebyshev polynomials. The Chebyshev pantograph operational matrix is introduced. The operational matrices of pantograph, derivative and product are utilized to reduce the problem to a set of algebraic equations. An error analysis is presented which allows the number of polynomials employed in the approximation to be selected in advance for a desired tolerance. Some examples are given to demonstrate the validity and applicability of the new method and a comparison is made with the existing results.  相似文献   
238.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号