首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   28篇
  国内免费   8篇
化学   14篇
晶体学   2篇
力学   1篇
物理学   35篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   10篇
  2013年   3篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  1997年   1篇
  1994年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
21.
吴洋  金晓  马乔生  李正红  鞠炳全  苏昶  许州  唐传祥 《物理学报》2011,60(8):84101-084101
根据两腔振荡器和返波管的特点研制了过模结构返波振荡器, 该器件主要由调制腔和换能腔(慢波结构)两部分组成. 调制腔既是电子束的预调制腔, 也是微波谐振反射腔, 它同换能腔形成一个过模微波谐振腔,经调制腔调制后的电子束在换能腔中实现束波能量转换. 根据加速器的电子束参数(束压为1 MV,束流为20 kA)设计了一个X波段的高功率微波器件,2.5维粒子模拟程序模拟得到微波频率为8.25 GHz,输出功率为5.70 GW. 用超导磁体作为引导磁场,单次运行输出微波功率为5.20 GW,微波频率为(8.25±0. 关键词: 两腔振荡器 返波振荡器 多波切连科夫发生器  相似文献   
22.
乙醇镁(乙氧基镁、二乙氧基镁)为乳白色或浅灰色粉末或颗粒,可燃,在空气中徐徐水解,溶于酸、碱,难溶于乙醚和烃类,略溶于乙醇,属于金属有机化学范畴,广泛应用于化工、陶瓷、医药、农药、香料及洗涤用品、生物化学等有机合成的缩合和格氏等反应中。固体乙醇镁的制备是以无水乙醇和高纯度  相似文献   
23.
通过原子转移自由基聚合制备了含甲氧基聚乙二醇(mPEG)、N-异丙基丙烯酰胺(PNIPAM)和2-(二乙基氨基)甲基丙烯酸乙酯(PDMAEMA)的三嵌段共聚物。该共聚物具有较为明显的温度响应特征,并且温敏性的范围可以通过CO2进行调控。该三嵌段聚合物在水溶液中存在最低临界溶液温度(LCST),且该聚合物水溶液在CO2调节的LCST下具有各种聚集状态。随着温度的升高,三嵌段聚合物表现出双重LCST行为,并最终导致PNIPAM嵌段和PDMAEMA嵌段分别在各自相转变温度下收缩,聚合物的疏水性增强,出现收缩-收缩-聚集的三相变过程。CO2通过调控PDMAEMA嵌段中的叔胺基团电性,可以使聚合物的亲水性增强,使得三嵌段聚合物在较高温度下难以聚集,实现了CO2对聚合物相转变温度的调控。   相似文献   
24.
目标以极高速度在大气层内运动时,周围会因剧烈摩擦产生等离子体绕流场.等离子体绕流场运动速度分布不均匀,而且绕流场电子密度随时间动态变化,导致等离子体绕流场对入射其中的电磁波产生不均匀的频率调制,进而影响雷达的探测性能.为了复现等离子体绕流场在电磁波照射时产生的不均匀频谱调制现象,本文在中国科学院力学研究所JF-10风洞开展了等离子体绕流场回波频谱测量实验,通过信号源、环形器、天线和频谱仪组成的测量系统,以点频发射体制,获取了S和C波段的回波频谱数据,观察到了等离子体绕流场对目标回波频谱的调制现象,对测量现象的形成原因进行了讨论;基于测量数据,仿真分析了等离子体绕流场对目标一维距离像的散焦效应.  相似文献   
25.
占昌和  李天明  蒙林  李正红  吴洋  邵剑波 《物理学报》2014,63(23):238405-238405
为了克服强流高增益速调管放大器中的自激振荡和适应低阻抗脉冲功率源发展的需要,利用高阻抗X波段五腔高增益速调管放大器进行了离轴八注八管高增益速调管功率合成技术研究,在频率为9.47 GHz、模拟输出功率为284 MW、增益为51.6 d B和效率为35.5%条件下,该器件整管微波输出稳定.在三维模型中,在离轴54 mm条件下该器件的微波输出特性稳定.基于实验室现有4.5 T(长1.1 m,室温孔径为150 mm)超导磁体,进行了八注八管高增益速调管的整管模拟,每个器件实现284 MW的微波输出.最后,为实现GW级功率输出,利用HFSS软件设计了用于离轴八注八管高增益速调管功率合成的八合一功率合成器,将该合成器同八注八管高增益速调管结合,模拟得到功率为1.84 GW、增益为50.7 d B、效率为28.8%的微波输出.  相似文献   
26.
Higher mode excitation is very serious in the relativistic klystron amplifier, especially for the high gain relativistic amplifier working at tens of kilo-amperes. The mechanism of higher mode excitation is explored in the PIC simulation and it is shown that insufficient separation of adjacent cavities is the main cause of higher mode excitation. So RF lossy material mounted on the drift tube wall is adopted to suppress higher mode excitation. A high gain S-band relativistic klystron amplifier is designed for the beam current of 13 kA and the voltage of 1 MV. PIC simulation shows that the output power is 3.2 GW when the input power is only 2.8 kW.  相似文献   
27.
通过二维和三维粒子模拟研究了高增益相对论速调管放大器中高次模式的激励机理,两者结果的一致性排除了高次非对称模式激励的影响。由此建立了高次模式起振的理论模型,给出了高次模式的起振电流。并通过在器件内加入微波衰减材料来抑制高次模式自激振荡,模拟获得了1.95GW的微波输出,增益62.8dB。  相似文献   
28.
采用真空碳管炉制备得到含Ce2O3三元及四元炼钢精炼渣,分别利用X射线衍射仪、炉渣熔点测定仪和RTW-10型熔体物性仪对渣的物相、熔化温度及粘度进行检测分析.研究表明:Ce在精炼渣中以正三价的形式稳定存在;CaO-Al2O3-Ce2O3三元渣的熔化温度范围为1465~1516℃;CaO-Al2O3-Ce2O3-SiO2四元渣的熔化温度范围为1348~1361℃,1500℃时的粘度值范围为0.289~0.497 Pa·s,其中46%CaO-38%Al2O3-5%Ce2O3-10%SiO2(质量分数)精炼渣具有良好的熔化和流动特性.  相似文献   
29.
本文研究了LCB晶体主平面内有效非线性光学系数最大的相位匹配方向上的三倍频特性,所用LCB晶体切割方向为:θ=48.7°,φ=90°,晶体尺寸:4×4×10 mm3.测量了它的角度带宽:θ角的角度带宽△θ×1为1.15mrad-cm;φ角的角度带宽△φ×1为86.15 mrad-em.还对其温度带宽进行了测定,结果为7.6℃-cm.利用这块晶体,得到了最高为31.8%的三倍频转换效率,而在相同实验条件下用LBO晶体(尺寸与LCB相同)得到的转换效率最高为38.4%.  相似文献   
30.
In order to overcome the disadvantages of conventional high frequency relativistic klystron amplifiers in power capability and RF conversion efficiency, a C-band relativistic extended interaction klystron amplifier with coaxial output cavity is designed with the aid of PIC code MAGIC. In the device, disk-loaded cavities are introduced in the input and intermediate cavity to increase the beam modulation depth, and a coaxial disk-loaded cavity is employed in the output cavity to enhance the RF conversion efficiency. In PIC simulation, when the beam voltage is 680 kV and current is 4 kA, the device can generate 1.11 GW output power at 5.64 GHz with an efficiency of 40.8%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号