首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1107篇
  免费   124篇
  国内免费   18篇
化学   1114篇
晶体学   3篇
力学   2篇
综合类   12篇
数学   17篇
物理学   101篇
  2023年   22篇
  2022年   37篇
  2021年   51篇
  2020年   89篇
  2019年   35篇
  2018年   24篇
  2017年   25篇
  2016年   48篇
  2015年   60篇
  2014年   53篇
  2013年   95篇
  2012年   75篇
  2011年   65篇
  2010年   58篇
  2009年   61篇
  2008年   60篇
  2007年   75篇
  2006年   73篇
  2005年   43篇
  2004年   38篇
  2003年   25篇
  2002年   33篇
  2001年   10篇
  2000年   19篇
  1999年   10篇
  1998年   6篇
  1997年   14篇
  1996年   6篇
  1995年   13篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1249条查询结果,搜索用时 15 毫秒
21.
22.
23.
Single-molecule fluorescence resonance energy transfer (sm-FRET) has become a widely used tool to reveal dynamic processes and molecule mechanisms hidden under ensemble measurements. However, the upper limit of fluorescent species used in sm-FRET is still orders of magnitude lower than the association affinity of many biological processes under physiological conditions. Herein, we introduce single-molecule photoactivation FRET (sm-PAFRET), a general approach to break the concentration barrier by using photoactivatable fluorophores as donors. We demonstrate sm-PAFRET by capturing transient FRET states and revealing new reaction pathways during translation using μm fluorophore labeled species, which is 2–3 orders of magnitude higher than commonly used in sm-FRET measurements. sm-PAFRET serves as an easy-to-implement tool to lift the concentration barrier and discover new molecular dynamic processes and mechanisms under physiological concentrations.  相似文献   
24.
Despite growing evidence demonstrates that the long non-coding ribonucleic acids (lncRNAs) are critical modulators for cancers, the knowledge about the DNA methylation patterns of lncRNAs is quite limited. We develop a systematic analysis pipeline to discover DNA methylation patterns for lncRNAs across multiple cancer subtypes from probe, gene and network levels. By using The Cancer Genome Atlas (TCGA) breast cancer methylation data, the pipeline discovers various DNA methylation patterns for lncRNAs across four major subtypes such as luminal A, luminal B, her2-enriched as well as basal-like. On the probe and gene level, we find that both differentially methylated probes and lncRNAs are subtype specific, while the lncRNAs are not as specific as probes. On the network level, the pipeline constructs differential co-methylation lncRNA network for each subtype. Then, it identifies both subtype specific and common lncRNA modules by simultaneously analyzing multiple networks. We show that the lncRNAs in subtype specific and common modules differ greatly in terms of topological structure, sequence conservation as well as expression. Furthermore, the subtype specific lncRNA modules serve as biomarkers to improve significantly the accuracy of breast cancer subtypes prediction. Finally, the common lncRNA modules associate with survival time of patients, which is critical for cancer therapy.  相似文献   
25.
26.
In this review, the experimental set-up and functional characteristics of single-wavelength and broad-band femtosecond upconversion spectrophotofluorometers developed in our laboratory are described. We discuss applications of this technique to biophysical problems, such as ultrafast fluorescence quenching and solvation dynamics of tryptophan, peptides, proteins, reduced nicotinamide adenine dinucleotide (NADH), and nucleic acids. In the tryptophan dynamics field, especially for proteins, two types of solvation dynamics on different time scales have been well explored: ~1 ps for bulk water, and tens of picoseconds for “biological water”, a term that combines effects of water and macromolecule dynamics. In addition, some proteins also show quasi-static self-quenching (QSSQ) phenomena. Interestingly, in our more recent work, we also find that similar mixtures of quenching and solvation dynamics occur for the metabolic cofactor NADH. In this review, we add a brief overview of the emerging development of fluorescent RNA aptamers and their potential application to live cell imaging, while noting how ultrafast measurement may speed their optimization.  相似文献   
27.
We report a label-free and simple approach for the detection of glycoprotein-120 (gp-120) using an aptamer-based liquid crystals (LCs) biosensing platform. The LCs are supported on the surface of a modified glass slide with a suitable amount of B40t77 aptamer, allowing the LCs to be homeotropically aligned. A pronounced topological change was observed on the surface due to a specific interaction between B40t77 and gp-120, which led to the disruption of the homeotropic alignment of LCs. This results in a dark-to-bright transition observed under a polarized optical microscope. With the developed biosensing platform, it was possible to not only identify gp-120, but obtained results were analyzed quantitatively through image analysis. The detection limit of the proposed biosensing platform was investigated to be 0.2 µg/mL of gp-120. Regarding selectivity of the developed platform, no response could be detected when gp-120 was replaced by other proteins, such as bovine serum albumin (BSA), hepatitis A virus capsid protein 1 (Hep A VP1) and immunoglobulin G protein (IgG). Due to attributes such as label-free, high specificity and no need for instrumental read-out, the presented biosensing platform provides the potential to develop a working device for the quick detection of HIV-1 gp-120.  相似文献   
28.
Wen-Jing Wang 《中国物理 B》2021,30(5):58701-058701
Gaussian network model (GNM) is an efficient method to investigate the structural dynamics of biomolecules. However, the application of GNM on RNAs is not as good as that on proteins, and there is still room to improve the model. In this study, two novel approaches, named the weighted GNM (wGNM) and the force-constant-decayed GNM (fcdGNM), were proposed to enhance the performance of ENM in investigating the structural dynamics of RNAs. In wGNM, the force constant for each spring is weighted by the number of interacting heavy atom pairs between two nucleotides. In fcdGNM, all the pairwise nucleotides were connected by springs and the force constant decayed exponentially with the separate distance of the nucleotide pairs. The performance of these two proposed models was evaluated by using a non-redundant RNA structure database composed of 51 RNA molecules. The calculation results show that both the proposed models outperform the conventional GNM in reproducing the experimental B-factors of RNA structures. Compared with the conventional GNM, the Pearson correlation coefficient between the predicted and experimental B-factors was improved by 9.85% and 6.76% for wGNM and fcdGNM, respectively. Our studies provide two candidate methods for better revealing the dynamical properties encoded in RNA structures.  相似文献   
29.
As chiral molecules, naturally occurring d -oligonucleotides have enantiomers, l -DNA and l -RNA, which are comprised of l -(deoxy)ribose sugars. These mirror-image oligonucleotides have the same physical and chemical properties as that of their native d -counterparts, yet are highly orthogonal to the stereospecific environment of biology. Consequently, l -oligonucleotides are resistant to nuclease degradation and many of the off-target interactions that plague traditional d -oligonucleotide-based technologies; thus making them ideal for biomedical applications. Despite a flurry of interest during the early 1990s, the inability of d - and l -oligonucleotides to form contiguous Watson–Crick base pairs with each other has ultimately led to the perception that l -oligonucleotides have only limited utility. Recently, however, scientists have begun to uncover novel strategies to harness the bio-orthogonality of l -oligonucleotides, while overcoming (and even exploiting) their inability to Watson–Crick base pair with the natural polymer. Herein, a brief history of l -oligonucleotide research is presented and emerging l -oligonucleotide-based technologies, as well as their applications in research and therapy, are presented.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号