首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2311篇
  免费   257篇
  国内免费   234篇
化学   2110篇
晶体学   40篇
力学   18篇
综合类   13篇
数学   4篇
物理学   617篇
  2024年   2篇
  2023年   21篇
  2022年   37篇
  2021年   56篇
  2020年   94篇
  2019年   69篇
  2018年   57篇
  2017年   55篇
  2016年   99篇
  2015年   93篇
  2014年   114篇
  2013年   217篇
  2012年   128篇
  2011年   133篇
  2010年   99篇
  2009年   144篇
  2008年   143篇
  2007年   142篇
  2006年   177篇
  2005年   126篇
  2004年   123篇
  2003年   124篇
  2002年   88篇
  2001年   53篇
  2000年   67篇
  1999年   61篇
  1998年   51篇
  1997年   43篇
  1996年   39篇
  1995年   37篇
  1994年   16篇
  1993年   18篇
  1992年   23篇
  1991年   7篇
  1990年   7篇
  1989年   5篇
  1988年   8篇
  1987年   9篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
排序方式: 共有2802条查询结果,搜索用时 46 毫秒
141.
A series of tris‐aryl phosphane oxides existing as residual enantiomers or diastereoisomers with substituents on the aryl rings differing in size and electronic properties were synthesized and characterized. Their electronic properties were evaluated on the basis of their electrochemical oxidation and reduction potentials together with those of the corresponding “blade bromides” (i.e., the naphthalene derivatives displaying the same substitution pattern of the tris‐naphthyl phosphane oxide blades, with a bromo substituent where the phosphorus atom is located) determined by CV. The residual stereoisomeric phosphane oxides were isolated in a stereochemically pure state and were found to be highly configurationally stable at room temperature (stereoisomerization barriers of about 27 kcal mol?1). The chiroptical properties of the residual stereoisomers and the assignments of absolute configuration are discussed. The configurational stability of residual tris‐aryl phosphane oxides was found to be scarcely influenced by the electronic properties of the substituents present on the aromatic rings constituting the blades, while steric effects play the most relevant role. Detailed theoretical calculations are in agreement with the experimental results and also contribute to a rational interpretation of the stereodynamics of these systems.  相似文献   
142.
143.
Detailed kinetic and computational investigation of the enantio‐ and diastereoselective allylation of aldehydes 1 with allyltrichlorosilanes 5 , employing the pyridine Noxides METHOX ( 9 ) and QUINOX ( 10 ) as chiral organocatalysts, indicate that the reaction can proceed through a dissociative (cationic) or associative (neutral) mechanism: METHOX apparently favors a pentacoordinate cationic transition state, while the less sterically demanding QUINOX is likely to operate via a hexacoordinate neutral complex. In both pathways, only one molecule of the catalyst is involved in the rate‐ and selectivity‐determining step, which is supported by both experimental and computational data.  相似文献   
144.
An efficient procedure for the oxidation of primary and secondary alcohols to aldehydes and ketones, respectively, with molecular oxygen under ambient conditions has been achieved. By applying catalytic amounts of Pd(OAc)2 in the presence of tertiary phosphine oxides (O?PR3) as ligands, a variety of substrates are selectively oxidized without formation of ester byproducts. Spectroscopic investigations and DFT calculations suggest stabilization of the active palladium(II) catalyst by phosphine oxide ligands.  相似文献   
145.
《Comptes Rendus Chimie》2014,17(7-8):641-655
Since the initial discovery of ordered mesoporous silica in early 1990s, considerable innovations were achieved regarding their synthesis, characterization and applications. One of the best outcomes of these intense research efforts is the development of a solid templating method called “nanocasting”, which is based on using mesoporous silica (or carbon) as a rigid template. This solid-to-solid replication method opened the pathway for synthesizing high surface area non-silica mesostructured materials that are challenging to obtain through conventional self-assembly processes which are based on amphiphilic soft structure-directing agents. In particular, the replicated metal oxide mesostructures obtained by this method were found to be highly versatile for a wide range of applications, especially in catalysis, owing to their large specific surface area. Furthermore, the nanocasting method is particularly suited for the synthesis of mixed metal compositions, favored by the possible confinement of mixed precursors in the nanopores of the template. In this account, we discuss some of the recent developments regarding the synthesis of nanocast mixed metal oxides and their perspectives of catalytic applications. It is here the choice of the authors to place emphasis on a few representative examples of compositions (e.g., non-noble metal-based catalysts, perovskites) and catalytic reactions (e.g., hydrogen production, gas-phase oxidation).  相似文献   
146.
Nanometer‐sized flakes of MnV2O6 were synthesized by a hydrothermal method. No surfactant, expensive metal salt, or alkali reagent was used. These MnV2O6 nanoflakes present a high discharge capacity of 768 mA h g?1 at 200 mA g?1, good rate capacity, and excellent cycling stability. Further investigation demonstrates that the nanoflake structure and the specific crystal structure make the prepared MnV2O6 a suitable material for lithium‐ion batteries.  相似文献   
147.
Two synthetic protocols leading to novel γ-aminophosphonate and phosphine oxide derivatives, by reductive amination of γ-phosphonylketones, are reported. The first method involved a two-step procedure. Imine intermediates were first isolated from the p-toluenesulfonic acid-catalyzed reaction of primary amines with γ-ketophosphonates and phosphine oxides, then reduced with NaBH4 in refluxing ethanol. The second method consists of a one-pot procedure which includes the condensation of γ-ketophosphonates and phosphine oxides with primary amines, in the presence of molecular sieves, followed by reduction with NaBH4. These methods offer significant advantages over prior reports, such as efficiency, generality, and good yields. Furthermore, they are green protocols avoiding hazardous hydrides and solvents.  相似文献   
148.
The dependence of the metal oxidation rate on the current density and temperature of joint destruction in sodium chloride was studied. It is established that the dependence of the oxidation rate of copper is linear and generally do not differ from the dependencies established at individual oxidation of copper in the solution of sodium chloride with concentration 46.5% wt. In contrast to the oxidation rate of copper, the oxidation rate dependence of cadmium has extreme character and the oxidation rate of cadmium at its joint oxidation of copper increased in 2-3 times indicating that the mutual influence of electrodes at the electrochemical process with alternating current. Thus, the obtained dependences can predict operating electrolysis parameters a obtain copper-cadmium oxide system of the given composition.  相似文献   
149.
For the first time, 18th‐century glass mosaics from the Capela de São João Baptista (Chapel of St. John the Baptist, Lisbon) were analysed by Raman microscopy (RM). This masterpiece in baroque mosaic art had one of its major contributors the most famous glassmaker in Rome, Alessio Mattioli. Mattioli was celebrated because of the opacity of his mosaics and the astonishing number of hues he was able to produce for mosaic decorating Saint Peter's Basilica in Rome. This study had two goals in mind: (1) characterising the materials involved in the manufacture of these glass mosaics and (2) lengthening the understanding of what was left of Mattioli's glassmaking records. As expected the mosaics presented a high ratio of crystalline phases, making RM the ideal technique for non‐destructive analysis. The mosaics contained a white ‘background’ or opacifier added identified as Ca2Sb2O7. The yellow tesserae are opacified with lead antimonate (Pb2Sb2O7) and ternary oxides, structures related to lead antimonate but with other ions entering the position of Sb4+ (namely Sn4+). Those ternary oxides are pervasive in most colours, admixed with other colorants. The red, orange, pink and brown colours were accomplished with cuprous oxide (Cu2O) and admixed with a ternary oxide to create the latter three colours. The red copper‐based colours were made according to the procedure to make a ruby copper glass and with the exception of the red colour; all mosaics exhibited a dark layer on each side of the mosaic, named scorzetta. This layer is the outcome of an oxidation reaction because of a quick cooling process and is composed of CuO. Finally the blue and green colours are accomplished with cobalt oxide and copper oxide, respectively, and the purple/black colour with manganese oxide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
150.
The development of selective electrocatalysts for the chlorine evolution reaction (CER) is majorly restrained by a scaling relation between the OCl and OOH adsorbates, rendering that active CER catalysts are also reasonably active in the competing oxygen evolution reaction (OER). While theory predicts that the OCl versus OOH scaling relation can be circumvented as soon as the elementary reaction steps in the CER comprise the Cl rather than the OCl adsorbate, it was demonstrated recently that PtN4 sites embedded in a carbon nanotube follow this theoretical prediction. Advanced experimental analyses illustrate that the PtN4 sites also reveal a different reaction kinetics compared to the industrial benchmark of dimensionally stable anodes (DSA). A reverse Volmer–Heyrovsky mechanism was identified, in which the rate-determining Volmer step for small overpotentials is followed by the kinetically limiting Heyrovsky step for larger overpotentials. Since the PtN4 sites excel DSA in terms of activity and chlorine selectivity, we suggest the Cl intermediate as well as the reverse Volmer–Heyrovsky mechanism as the design criteria for the development of next-generation electrode materials beyond DSA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号