首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9211篇
  免费   1655篇
  国内免费   841篇
化学   9278篇
晶体学   71篇
力学   87篇
综合类   25篇
数学   9篇
物理学   2237篇
  2024年   4篇
  2023年   152篇
  2022年   227篇
  2021年   500篇
  2020年   671篇
  2019年   531篇
  2018年   468篇
  2017年   539篇
  2016年   741篇
  2015年   720篇
  2014年   801篇
  2013年   924篇
  2012年   830篇
  2011年   818篇
  2010年   632篇
  2009年   623篇
  2008年   538篇
  2007年   488篇
  2006年   377篇
  2005年   297篇
  2004年   194篇
  2003年   177篇
  2002年   132篇
  2001年   114篇
  2000年   75篇
  1999年   57篇
  1998年   28篇
  1997年   15篇
  1996年   8篇
  1995年   8篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   7篇
  1985年   2篇
  1983年   3篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 616 毫秒
121.
This paper is focused on the use of branched poly(ethyleneimine) (PEI) as reducing as well as stabilizing agent for the formation of gold nanoparticles in different media. The process of nanoparticle formation was investigated, in the absence of any other reducing agents, in microemulsion template phase in comparison to the nucleation process in aqueous polymer solution.

On the one hand, it was shown that the polyelectrolyte can be used for the controlled single-step synthesis and stabilization of gold nanoparticles via a nucleation reaction and particles with an average diameter of 7.1 nm can be produced.

On the other hand, it was demonstrated that the polymer can also act as reducing and stabilizing agent in much more complex systems, i.e. in water-in-oil (w/o) microemulsion droplets. The reverse microemulsion droplets of the quaternary system sodium dodecylsulfate (SDS)/toluene–pentanol (1:1)/water were successfully used for the synthesis of gold nanoparticles. The polymer, incorporated in the droplets, exhibits reducing properties, adsorbs on the surface of the nanoparticles and prevents their aggregation. Consequently, nanoparticles of 8.6 nm can be redispersed after solvent evaporation without a change of their size.

Nevertheless, the polymer acts already as a “template” during the formation of the nanoparticles in water and in microemulsion, so that an additional template effect of the microemulsion is not observed.

The particle formation for both methods is checked by means of UV–vis spectroscopy and the particle size and size distribution are investigated via dynamic light scattering and transmission electron microscopy (TEM).  相似文献   

122.
Platinum nanoparticle core-polyaryl ether trisacetic acid ammonium chloride dendrimer shell nanocomposites (Pt@Gn-NACl) were prepared and used as catalysts for hydrogenation of nitrobenzenes to anilines with molecular hydrogen under mild conditions. The as-prepared nanoparticles have mean particle size from 2.0 to 5.5 nm, depending on the molar ratio of the metal and the dendrimer. The Pt nanoparticles demonstrate near-monodisperse when the molar ratio of Pt and G3-NACl is below 30. The interaction among three carboxyl groups terminated at the dendron and the metallic core keeps the Pt nanoparticles from agglomerating. The colloidal solution of Pt nanoparticles stabilized by the dendrimer, in which the molar ratio of Pt/G3-NACl was less than 60, is stable without precipitation for several weeks. The dendrons attach to the metal core radially, and a substantial fraction of the surface of the metal nanoparticle is unpassivated and available for catalytic reactions. Turnover frequencies for the hydrogenation of nitrobenzenes to anilines change from 353 to 49 h−1 depending on the dendrimer generation and substrates. The dendrimer catalysts are stable during the catalytic hydrogenation process and can be recovered by centrifugation and reused. The results suggest the effectiveness of polyaryl ether trisacetic acid ammonium chloride dendrimer as a stabilizer for the preparation of Pt nanoparticle catalysts.  相似文献   
123.
Xia Chu  Daxue Duan  Guoli Shen  Ruqin Yu 《Talanta》2007,71(5):2040-2047
A new amperometric biosensor for glucose was developed based on adsorption of glucose oxidase (GOx) at the gold and platinum nanoparticles-modified carbon nanotube (CNT) electrode. CNTs were covalently immobilized on gold electrode via carbodiimide chemistry by forming amide linkages between carboxylic acid groups on the CNTs and amine residues of cysteamine self-assembled monolayer (SAM). The fabricated GOx/Aunano/Ptnano/CNT electrode was covered with a thin layer of Nafion to avoid the loss of GOx in determination and to improve the anti-interferent ability. The immobilization of CNTs on the gold electrode was characterized by quartz crystal microbalance technique. The morphologies of the CNT/gold and Ptnano/CNT/gold electrodes have been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the gold, CNT/gold, Ptnano/gold and Ptnano/CNT/gold electrodes has also been studied by amperometric method. In addition, effects of electrodeposition time of Pt nanoparticles, pH value, applied potential and electroactive interferents on the amperometric response of the sensor were discussed.

The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for glucose in the absence of a mediator. The linear range was from 0.5 to 17.5 mM with correction coefficient of 0.996. The biosensor had good reproducibility and stability for the determination of glucose.  相似文献   

124.
Nanoparticles of α-phase nickel hydroxide were synthesized by a single-step hydrothermal method using urea as the hydrolytic agent. Precipitated powders were of pure turbostratic α-phase as confirmed by x-ray diffraction profile. The ageing of α-Ni(OH)2 in 1.0 M alkali solutions is investigated for pure non-intercalated α-Ni(OH)2 and thiourea intercalated/absorbed α-phase nanomaterials. The α-Ni(OH)2 powder immobilized on the surface of graphite electrodes shows a gradual α→β phase transformation with continuous voltammetric cycling, and the concentration gradient of water that exists in the layered-double-hydroxide-like interlayers of α-phase and the solution was shown to play a crucial role on the high electrochemical activity of this phase nickel hydroxide. To understand the role of water in the ageing process, concomitant entries of non-aqueous solvents like ethanol and acetonitrile along with thiourea were effected. Cyclic voltammetric measurements of thiourea-treated α-Ni(OH)2 samples revealed that hydroxyl ion influx during the anodic oxidation depends on the counter flux of solvent molecules, and if the intercalated the solvent is acetonitrile, then the electrochemical activity of α-Ni(OH)2 reduced drastically; Q a/Q c>1 for water as solvent in the interlayers α-Ni(OH)2 and Q a/Q c<1 for ethanol and acetonitrile as solvents. The α-phase gets stabilized in the presence of thiourea with water and ethanol as co-intercalates. Transmission electron microscope images of α-Ni(OH)2 and thiourea-treated samples show a change in particle size and morphology. Elemental CHNS analysis confirms the presence of sulphur in the thiourea intercalated samples.  相似文献   
125.
二氧化硅纳米与微米颗粒作为固定化酶载体的生物效应   总被引:3,自引:1,他引:3  
分别将二氧化硅纳米颗粒(SiNPs)与微米颗粒(SiMPs)作为固定化载体, 选择多聚酶牛肝过氧化氢酶(CAT)和单体酶辣根过氧化物酶(HRP)作为酶模型, 通过考察酶固定化后在酶活回收率、热稳定性、 酶促反应最适温度以及酶在水-有机溶剂混合体系中催化能力的变化, 对载体与酶所产生的生物效应差异进行了系统研究. 酶活回收率结果表明, SiNPs显示出比SiMPs优越的对酶无选择性的高生物亲和性, 而SiMPs则能使固定于其上的酶热稳定性大幅度提高, 且二者都能使固定化酶在有机相中的稳定性得到明显增强. 但酶促反应最适温度的变化结果表明, 对不同类型的酶所产生的生物效应则表现出无规律性.  相似文献   
126.
A new dual‐amplification strategy of electrochemical signaling from antigen–antibody interactions was proposed via backfilling gold nanoparticles on (3‐mercaptopropyl) trimethoxysilane sol‐gel (MPTS) functionalized interface. The MPTS was employed not only as a building block for the electrode surface modification but also as a matrix for ligand functionalization with first amplification. The second signal amplification strategy introduced in this study was based on the backfilling immobilization of nanogold particles to the immunosensor surface. Several coupling techniques, such as with nanogold but not MPTS or with MPTS but not nanogold, were investigated for the determination of carcinoembryonic antigen (CEA) as a model, and a very good result was obtained with nanogold and MPTS coupling immunosensor. With the noncompetitive format, the formation of the antigen–antibody complex by a simple one‐step immunoreaction between the immobilized anti‐CEA and CEA in sample solution introduced membrane potential change before and after the antigen–antibody interaction. Under optimal conditions, the proposed immunosensor exhibited a good electrochemical behavior to CEA in a dynamic concentration range of 4.4 to 85.7 ng/mL with a detection limit of 1.2 ng/mL (at 3 δ). Moreover, the precision, reproducibility and stability of the as‐prepared immunosensor were acceptable. Importantly, the proposed methodology would be valuable for diagnosis and monitoring of carcinoma and its metastasis.  相似文献   
127.
Synthesis and characterization of silver nanoparticle/kaolinite composites   总被引:3,自引:0,他引:3  
Ag nanoparticles were synthetized in the interlamellar space of a layered kaolinite clay mineral. Disaggregation of the lamellae of non-swelling kaolinite was achieved by intercalation of dimethyl sulfoxide. The kaolinite was suspended in aqueous AgNO3 solution and, after adsorption of Ag+, the ions were reduced with NaBH4. The interlamellar space limits particle growth (dave=3.8–4.2 nm); however, larger silver particles may be formed on the exterior surface of kaolinite with dave=5.6–10.5 nm diameter. The diameter of the particles prepared in this way is depending on the initial AgNO3 concentration. The silver nanoparticles prepared were characterized by UV–vis spectroscopy, X-ray diffraction (XRD), Small angle X-ray scattering (SAXS), X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy (TEM).  相似文献   
128.
金纳米粒子在氨基表面上的组装-pH值的影响   总被引:6,自引:0,他引:6  
用原子力显微镜(AFM)和表面增强喇曼光谱(SERS)研究了pH值对金纳米粒子在Au/巯基苯胺自组装膜表面上组装效果的影响.AFM结果表明,金纳米粒子在表面上的覆盖度随pH值表现出规律性的变化,巯基苯胺自组装膜的SERS强度随pH值的变化也有类似的趋势.在磁性环境下,氨基未质子化,金粒子难以组装上,而在酸性条件下,氨基质子化带正电,金粒子与基底容易结合.我们认为金纳米粒子和氨基之间的作用属于静电力,pH值同时影响膜表面氨基的质子化程度和金纳米粒子表面的带电量.  相似文献   
129.
Methods of the preparation of catalysts for alkane skeletal isomerization based on uniform nanoparticles of sulfated zirconia anchored to different supports were investigated. These catalysts were characterized by using the ICP, HRTEM and BET techniques. The activities of the catalysts in the reaction of n-butane isomerization were measured and compared with those of bulk catalysts.  相似文献   
130.
The controlled decomposition of an Ru(0) organometallic precursor dispersed in 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMI.PF(6)), tetrafluoroborate (BMI.BF(4)) or trifluoromethane sulfonate (BMI.CF(3)SO(3)) ionic liquids with H(2) represents a simple and efficient method for the generation of Ru(0) nanoparticles. TEM analysis of these nanoparticles shows the formation of superstructures with diameters of approximately 57 nm that contain dispersed Ru(0) nanoparticles with diameters of 2.6+/-0.4 nm. These nanoparticles dispersed in the ionic liquids are efficient multiphase catalysts for the hydrogenation of alkenes and benzene under mild reaction conditions (4 atm, 75 degrees C). The ternary diagram (benzene/cyclohexene/BMI.PF(6)) indicated a maximum of 1 % cyclohexene concentration in BMI.PF(6), which is attained with 4 % benzene in the ionic phase. This solubility difference in the ionic liquid can be used for the extraction of cyclohexene during benzene hydrogenation by Ru catalysts suspended in BMI.PF(6). Selectivities of up to 39 % in cyclohexene can be attained at very low benzene conversion. Although the maximum yield of 2 % in cyclohexene is too low for technical applications, it represents a rare example of partial hydrogenation of benzene by soluble transition-metal nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号