首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   1篇
  国内免费   9篇
化学   128篇
  2023年   12篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   7篇
  2016年   2篇
  2015年   3篇
  2014年   13篇
  2013年   16篇
  2012年   3篇
  2011年   8篇
  2010年   8篇
  2009年   7篇
  2008年   3篇
  2007年   8篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
121.
Arylated naphthalenes were prepared by Suzuki–Miyaura cross-coupling reactions of methyl 4-bromo-3-(trifluoromethylsulfonyloxy)-2-naphthoate. The reactions proceeded with very good chemoselectivity in favor of the triflate group, due to additive electronic ortho electronic effects.  相似文献   
122.
The principle of a molecular kit is used for the covalent assembly of secondary structure forming peptide blocks to predetermined packing topologies. The resulting locked-in folds (LIFs; depicted schematically) are readily accessible and bypass the intriguing folding problem of linear peptide chains. This strategy allows, for example, mimicking of the essential structural and functional features of zinc finger proteins.  相似文献   
123.
We have developed a novel visible-light-catalyzed bioconjugation reaction, PhotoCLIC, that enables chemoselective attachment of diverse aromatic amine reagents onto a site-specifically installed 5-hydroxytryptophan residue (5HTP) on full-length proteins of varied complexity. The reaction uses catalytic amounts of methylene blue and blue/red light-emitting diodes (455/650 nm) for rapid site-specific protein bioconjugation. Characterization of the PhotoCLIC product reveals a unique structure formed likely through a singlet oxygen-dependent modification of 5HTP. PhotoCLIC has a wide substrate scope and its compatibility with strain-promoted azide-alkyne click reaction, enables site-specific dual-labeling of a target protein.  相似文献   
124.
Regio- and chemoselective C−H activation at multi-positions of a single molecule is fascinating but chemically challenging. The homologous cytochrome P450 enzymes IkaD and CftA catalyze multiple C−H oxidations on the same polycyclic tetramate macrolactam (PoTeM) ikarugamycin, with distinct regio- and chemoselectivity. Herein we provide mechanistic understanding of their functional differences by solving crystal structures of IkaD and CftA in complex with ikarugamycin and unnatural substrates. Distinct conformations of the F/G region in IkaD and CftA are found to differentiate the orientation of PoTeM substrates, by causing different binding patterns with polar moieties to determine site selection, oxidation order, and chemoselectivity. Fine-tuning the polar subpocket altered the regioselectivity of IkaD, indicating that substrate re-orientation by mutating residues distal to the oxidation site could serve as an important method in future engineering of P450 enzymes.  相似文献   
125.
Here, we report a highly chemo-, diastereo-, and enantioselective allyl-allyl coupling between branched allyl alcohols and α-silyl-substituted allylboronate esters, catalyzed by a chiral iridium complex. The α-silyl-substituted allylboronate esters can be chemoselectively coupled with allyl electrophiles, affording a diverse set of enantioenriched (E)-1-boryl-substituted 1,5-dienes in good yields, with excellent stereoselectivity. By permuting the chiral iridium catalysts and the substrates, we efficiently and selectively obtained all four stereoisomers bearing two consecutive chiral centers. Mechanistic studies via density functional theory calculations revealed the origins of the diastereo- and chemoselectivities, indicating the pivotal roles of the steric interaction, the β-silicon effect, and a rapid desilylation process. Additional synthetic modifications for preparing a variety of enantioenriched compounds containing contiguous chiral centers are also included.  相似文献   
126.
A systematic evaluation of competitive bisphosphine/Ni-catalyzed C−N versus C−O cross-couplings involving model compounds enabled development of hitherto unknown chemoselective O- and N-arylation of amino alcohols with (hetero)aryl chloride electrophiles, without recourse to protection group chemistry. Use of the CyPAd-DalPhos pre-catalyst C2 enabled particularly challenging O-arylation chemoselectivity in amino alcohols featuring branched primary and secondary alkylamine groups, while selective N-arylation was observed in substrates featuring less-hindered linear alkylamine and aniline reacting groups. Useful reaction scope in the (hetero)aryl chloride was achieved throughout, and the ability to conduct such transformations using benchtop handling of materials is demonstrated.  相似文献   
127.
Geminal cross couplings using multiple components enable the formation of several different bonds at one site in the building of tertiary and quaternary alkanes. Nevertheless, there are remaining issues of concern—cleavage of two geminal bonds and control of selectivity present challenges. We report here the geminal cross couplings of three components by reactions of dihaloalkanes with organomagnesium and chlorosilanes or alkyl tosylates by Cr catalysis, affording the formation of geminal C−C/C−Si or C−C/C−C bonds in the creation of tertiary and quaternary alkanes. The geminal couplings are catalyzed by low-cost CrCl2, enabling the sluggishness of competitive Kumada-type side couplings and homocouplings of Grignard reagents, in achieving high chemoselectivity. Experimental and theoretical studies indicate that two geminal C-halide bonds are continuously cleaved by Cr to afford a metal carbene intermediate, which couples with a Grignard reagent, followed by silylation, in the formation of geminal C−C and C−Si bonds via a novel inner-sphere radical coupling mechanism. These three-component geminal cross couplings are value-addition to the synthesis of commercial drugs and bioactive molecules in medicinal chemistry.  相似文献   
128.
Disclosing the chemoselectivity and regioselectivity of phosphine-catalyzed Rauhut-Currier (R−C) reaction remains a challenge. Here, a comprehensive study on the possible mechanisms and origins of the chemoselectivity and regioselectivity of PBu3-catalyzed R−C reactions between ethyl acrylate and chalcone is performed by DFT. Both cross and homo R−C reactions are investigated and compared. The computational results show that the cross R−C reaction is energetically favorable than the homo R−C reaction, with head-to-tail product being generated preferentially. Moreover, the C−C bond formation process is identified to be the regioselectivity- and chemoselectivity-determining step. The CDFT and Parr function analyses are successfully used to predict the origins of chemoselectivity and regioselectivity, respectively. This work would provide a valuable case for exploring the origins of the chemoselectivity and regioselectivity of the phosphine catalyzed reactions, which should be helpful to understand and control the selectivities by rational design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号