首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   60篇
  国内免费   37篇
化学   97篇
力学   73篇
综合类   2篇
数学   90篇
物理学   621篇
  2024年   4篇
  2023年   7篇
  2022年   9篇
  2021年   14篇
  2020年   19篇
  2019年   17篇
  2018年   13篇
  2017年   19篇
  2016年   33篇
  2015年   33篇
  2014年   65篇
  2013年   59篇
  2012年   23篇
  2011年   64篇
  2010年   40篇
  2009年   44篇
  2008年   58篇
  2007年   71篇
  2006年   57篇
  2005年   27篇
  2004年   33篇
  2003年   27篇
  2002年   14篇
  2001年   24篇
  2000年   13篇
  1999年   11篇
  1998年   15篇
  1997年   11篇
  1996年   12篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1979年   2篇
  1973年   1篇
排序方式: 共有883条查询结果,搜索用时 265 毫秒
101.
102.
This article presents the comparison of approximate and exact small-signal theories for analyzing the influence of the higher-order dispersion terms on dispersive optical communication systems operating near zero dispersion wavelength for linear single-mode fiber. For the approximate theory, the generalized conversion matrix has been reported and gives the transfer function of intensity and phase from the fiber input to fiber output for a laser source including the influence of any higher-order dispersion term. In addition, expressions for the small-signal frequency response and the relative intensity noise (RIN) response of an ultrafast laser diode including noises are derived. However, it is observed that the approximation assumed for the second-order dispersion term for the approximate analysis is not valid. From the approximate theory, the exact generalized conversion matrix and exact expressions for small-signal frequency response and relative intensity noise (RIN) are obtained. We show that for the exact theory, the second-order dispersion term has no effect on intensity and frequency response even at large modulating frequencies and large propagation distances contrary to the approximate theory as reported by other authors. But we show that third-order dispersion term certainly has some minute impact on the frequency and RIN response for long distance links at high modulating frequencies.  相似文献   
103.
Frequency domain (FD) fluorescence lifetime data was collected for a series of 20 crude petroleum oils using a 405 nm excitation source and over a spectral range of ~426 to ~650 nm. Average fluorescence lifetimes were calculated using three different models: discrete multi-exponential, Gaussian distribution, and Lorentzian distribution. Fitting the data to extract accurate average lifetimes using the various models proved easier and less time consuming for the FD data than with Time Correlated Single Photon Counting (TCSPC) methods however the analysis of confidence intervals to the computed average lifetimes proved cumbersome for both methods. The uncertainty in the average lifetime was generally larger for the discrete lifetime multi-exponential model when compared to the distribution-based models. For the lifetime distributions, the data from the light crude oils with long lifetimes generally fit to a single decay term. Heavier oils with shorter lifetimes required multiple decay terms. The actual value for the average lifetime is more dependant on the specific fitting model employed than the data acquisition method used. Correlations between average fluorescence lifetimes and physical and chemical parameters of the crude oils were made with a view to developing a quantitative model for predicting the gross chemical composition of crude oils. It was found that there was no significant benefit gained by using FD over TCSPC other than more rapid data analysis in the FD case. For the FD data the Gaussian distribution model for fluorescence lifetime gave the best correlations with chemical composition allowing a qualitative correlation to some bulk oil parameters.
Alan G. RyderEmail:
  相似文献   
104.
A new scheme for obtaining HSQC spectra with improved resolution or in a shorter time called SHARC (Shaped Arrayed data aCquisition protocol) is proposed, which uses region selective RF pulses and allows the sweep width to be adjusted individually for each region. It thus bypasses the problems with the Nyquist theorem associated with other method suggested for this purpose. Assignment of the cross-peaks to their respective region is achieved by manipulating the phases of the RF pulses and/or their frequencies. SHARC NMR can be applied without any previous knowledge of the chemical shift distribution, but can be further optimized on the basis of a quick overview spectrum.  相似文献   
105.
A reference arm W-band (94 GHz) microwave bridge with two sample-irradiation arms for saturation recovery (SR) EPR and ELDOR experiments is described. Frequencies in each arm are derived from 2 GHz synthesizers that have a common time-base and are translated to 94 GHz in steps of 33 and 59 GHz. Intended applications are to nitroxide radical spin labels and spin probes in the liquid phase. An enabling technology is the use of a W-band loop-gap resonator (LGR) [J.W. Sidabras, R.R. Mett, W. Froncisz, T.G. Camenisch, J.R. Anderson, J.S. Hyde, Multipurpose EPR loop-gap resonator and cylindrical TE011 cavity for aqueous samples at 94 GHz, Rev. Sci. Instrum. 78 (2007) 034701]. The high efficiency parameter (8.2 GW−1/2 with sample) permits the saturating pump pulse level to be just 5 mW or less. Applications of SR EPR and ELDOR to the hydrophilic spin labels 3-carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl (CTPO) and 2,2,6,6,-tetramethyl-4-piperidone-1-oxyl (TEMPONE) are described in detail. In the SR ELDOR experiment, nitrogen nuclear relaxation as well as Heisenberg exchange transfer saturation from pumped to observed hyperfine transitions. SR ELDOR was found to be an essential method for measurements of saturation transfer rates for small molecules such as TEMPONE. Free induction decay (FID) signals for small nitroxides at W-band are also reported. Results are compared with multifrequency measurements of T1e previously reported for these molecules in the range of 2–35 GHz [J.S. Hyde, J.-J. Yin, W.K. Subczynski, T.G. Camenisch, J.J. Ratke, W. Froncisz, Spin label EPR T1 values using saturation recovery from 2 to 35 GHz. J. Phys. Chem. B 108 (2004) 9524–9529]. The values of T1e decrease at 94 GHz relative to values at 35 GHz.  相似文献   
106.
Automatic phasing of MR images. Part I: linearly varying phase   总被引:1,自引:1,他引:0  
In spin-echo and well shimmed gradient-echo images, the phase of the complex image often varies linearly in both the readout and phase-encode directions. Thus, in principle, it is possible to display an image in absorption mode. However, manually determining the two first-order and one zero-order phase parameters needed to display an absorption-mode image is a formidable task. In this paper, the Bayesian calculations needed to automatically determine these parameters are presented, and the calculations are illustrated using spin-echo images.  相似文献   
107.
We present a newly-developed microwave probe for performing sensitive high-field/multi-frequency electron spin resonance (ESR) measurements under high hydrostatic pressures. The system consists of a BeCu-made pressure-resistant vessel, which accommodates the investigated sample and a diamond microwave coupling window. The probe’s interior is completely filled with a pressure-transmitting fluid. The setup operates in reflection mode and can easily be assembled with a standard oversized microwave circuitry. The probe-head withstands hydrostatic pressures up to 1.6 GPa and interfaces with our home-built quasi-optical high-field ESR facility, operating in a millimeter/submillimeter frequency range of 105–420 GHz and in magnetic fields up to 16 T. The overall performance of the probe was tested, while studying the pressure-induced changes in the spin-relaxation mechanisms of a quasi-1D conducting polymer, KC60. The preliminary measurements revealed that the probe yields similar signal-to-noise ratio to that of commercially available low-frequency ESR spectrometers. Moreover, by observing the conduction electron spin resonance (CESR) linewidth broadening for KC60 in an unprecedented microwave frequency range of 210–420 GHz and in the pressure range of up to 1.6 GPa, we demonstrate that a combination of high-pressure ESR probe and high-field/multi-frequency spectrometer allows us to measure the spin relaxation rates in conducting spin systems, like the quasi-1D conductor, KC60.  相似文献   
108.
In this paper, we studied efficient second-harmonic generation (SHG) of femtosecond pulses in both phase- and group-velocity-matched structures. Obtained results show that phase matching becomes more critical under conditions required for high levels of conversion efficiency. And the imperfect phase mismatch caused by mismatched group-velocity dispersion (GVD) will limit conversion efficiency as well as bandwidth of generated second-harmonic (SH) pulses. The spectral characteristics of the generated SH pulses and its conversion efficiency in the strong pump regime are investigated in detail. The acceptance bandwidth of nonlinear crystal in the high-efficiency SHG is redefined in the paper, and the definition is much closer to the practical application of design.  相似文献   
109.
A modified Fourier transform profilometry (FTP) based on a fringe pattern with two frequency components is proposed, which provides a larger measuring range than that of the traditional FTP. We analyze the maximum measuring range and give an expression to describe the measurable slope of the height variation limitation of this method. The modified FTP provides us another approach to eliminate frequency overlapping. When the spectra distribution of a measured object is not spherical symmetry, we can avoid the frequency aliasing through projecting a fringe pattern with two frequency components, instead of increasing the density of the projected fringe and the resolution of a CCD camera. The theoretical analysis and primary experiments verified the method.  相似文献   
110.
A millimeter wave phase locked and frequency multiplying source is proposed in this paper. The design includes an X-band phase locked loop (PLL) frequency synthesizer as the base frequency source, and a monolithic millimeter wave frequency tripler, which is developed by using OMMIC 0.18μm pHEMT process. The PLL and the tripler are integrated in a single circuit board to make a low-cost and compact frequency source with the size of 6cm × 5cm. Measurement shows an output power of more than 4.8dBm at the frequency range from 35 to 36.7GHz. A phase noise of about -92dBc/Hz at 100kHz offset is achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号