首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   963篇
  免费   14篇
  国内免费   66篇
化学   744篇
晶体学   5篇
力学   27篇
综合类   1篇
数学   1篇
物理学   265篇
  2024年   1篇
  2023年   14篇
  2022年   10篇
  2021年   6篇
  2020年   13篇
  2019年   22篇
  2018年   19篇
  2017年   24篇
  2016年   27篇
  2015年   17篇
  2014年   24篇
  2013年   42篇
  2012年   52篇
  2011年   84篇
  2010年   52篇
  2009年   64篇
  2008年   58篇
  2007年   72篇
  2006年   68篇
  2005年   60篇
  2004年   60篇
  2003年   32篇
  2002年   33篇
  2001年   26篇
  2000年   13篇
  1999年   15篇
  1998年   18篇
  1997年   23篇
  1996年   15篇
  1995年   10篇
  1994年   3篇
  1993年   11篇
  1992年   9篇
  1991年   10篇
  1990年   5篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1981年   3篇
  1980年   8篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1043条查询结果,搜索用时 15 毫秒
11.
The magnesium–magnesium hydride–hydrogen-system (Mg–MgH2–H2) offers, because of its combined hydrogen and heat storage capacity, the possibility to design hydride heat pumps and heat stores. For such industrial application systems based on cylindrically formed reactors filled with an active magnesium powder, the effective thermal conductivity limits the time in which the metal hydride alloy is charged and discharged with hydrogen. Determination of this transport coefficient is of fundamental importance for the optimum design of magnesium hydride reactors. The complex interrelation of the different transport mechanisms in a metal hydride packed bed and the hitherto undefined rule that the solid effective thermal conductivity behaves as a function of the hydrogen concentration, requires a reliable and simple-to-realize measuring method so as to determine the effective thermal conductivity of a magnesium hydride bed. In the present study, a report is given for the first time on the initiation of a measuring technique with oscillating change of temperature in a non-permeated packed bed of fine-grained material. The measurement of the effective thermal conductivity can ensue by tailoring the problem-specific mathematical result to the experimentally recorded temperature-time function. The effective thermal conductivity of the magnesium hydride bed varies between 2 and 8 W/(m K) in a temperature range of 523–653 K.  相似文献   
12.
A magnesium‐catalyzed hydroboration of alkynes providing good yields and selectivities for a wide range of terminal and symmetrical and unsymmetrical internal alkynes has been developed. The compatibility with many functional groups makes this magnesium catalyzed procedure attractive for late stage functionalization. Experimental mechanistic investigations and DFT calculations reveal insights into the reaction mechanism of the magnesium catalyzed protocol.  相似文献   
13.
Slow evaporation of an aqueous solution containing l-threonine and magnesium sulphate heptahydrate, results in the fractional crystallization of the less soluble l-threonine crystal and not any novel optoelectronic ‘magnesium sulfate admixtured l-threonine’ crystal as reported by Puhal Raj et al. in Optik, 124 (2013) 6887–6891.  相似文献   
14.
Wei Zhang  Jinwen Lu  Wangtu Huo  Q. Wei 《哲学杂志》2018,98(17):1576-1593
Microstructural evolution and grain refinement mechanism in AZ31 magnesium alloy subjected to sliding friction treatment were investigated by means of transmission electron microscopy. The process of grain refinement was found to involve the following stages: (I) coarse grains were divided into fine twin plates through mechanical twinning; then the twin plates were transformed to lamellae with the accumulation of residual dislocations at the twin boundaries; (II) the lamellae were separated into subgrains with increasing grain boundary misorientation and evolution of high angle boundaries into random boundaries by continuous dynamic recrystallisation (cDRX); (III) the formation of nanograins. The mechanisms for the final stage, the formation of nanograins, can be classified into three types: (i) cDRX; (ii) discontinuous dynamic recrystallisation (dDRX); (iii) a combined mechanism of prior shear-band and subsequent dDRX. Stored strain energy plays an important role in determining deformation mechanisms during plastic deformation.  相似文献   
15.
Because controlling the corrosion rate of magnesium metal will be crucial to the success of biomedical implants containing pure magnesium or magnesium alloys, many ways have been sought to improve in vitro tests to analyze corrosion rates, and also to identify new methods of preparing or post‐processing magnesium. In this work, for an in vitro assay, we explored the use of a commercially available conductivity sensor to study magnesium corrosion under cell culture conditions that duplicate many physiologically appropriate parameters. With this sensor, we studied the corrosion of two previously untested magnesium single crystal samples that differed in surface treatments that could alter corrosion rates. The results show that the relative conductivity changes in (mS/cm) over the total time of immersion were proportional to the corrosion rates in (mm/y) and also to the total magnesium released, as detected by inductively coupled plasma mass spectrometry (ICP‐MS).  相似文献   
16.
17.
18.
Magnesium hydrogen sulfate powder was found to catalyze stereoselective conversion of dialkyl 2-(imido-N-yl)-3-(triphenylphosphorany-lidene)butanedioates to electron-poor (Z)-N-vinylimides in solvent-free conditions at 95°C 1 h in high conversions. Microwave also was found to catalyze the same reactions in the presence of magnesium hydrogen sulfate powder in solvent-free conditions in 3 min.  相似文献   
19.
Magnesium oxide nanotubes were prepared by electrospinning technique. The nanocatalysts have been characterized by various sophisticated techniques, including XRD, SEM, and TEM. The activities of these NT catalysts are promoting pyrazolyl 1,4-dihydropyridine syntheses have been extensively investigated. Various advantages associated with these protocols simple workup procedure, short reaction times, high yields and reusability of the catalyst.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号