首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   10篇
化学   3篇
力学   53篇
数学   3篇
物理学   75篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   11篇
  2005年   18篇
  2004年   10篇
  2003年   10篇
  2002年   5篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1990年   1篇
  1983年   1篇
  1973年   1篇
排序方式: 共有134条查询结果,搜索用时 46 毫秒
11.
In this work, certain peculiarities of the dynamics of pressure waves in a liquid containing bubbles are studied. The specification of a model of bubbly liquids with regard to acoustic damping of the bubbles is considered. Our theoretical results are compared with experimental ones.Received: 30 June 2002, Accepted: 2 February 2003, Published online: 11 June 2003  相似文献   
12.
I. David Abrahams   《Wave Motion》2002,36(4):311-333
Many problems in linear elastodynamics, or dynamic fracture mechanics, can be reduced to Wiener–Hopf functional equations defined in a strip in a complex transform plane. Apart from a few special cases, the inherent coupling between shear and compressional body motions gives rise to coupled systems of equations, and so the resulting Wiener–Hopf kernels are of matrix form. The key step in the solution of a Wiener–Hopf equation, which is to decompose the kernel into a product of two factors with particular analyticity properties, can be accomplished explicitly for scalar kernels. However, apart from special matrices which yield commutative factorizations, no procedure has yet been devised to factorize exactly general matrix kernels.

This paper shall demonstrate, by way of example, that the Wiener–Hopf approximant matrix (WHAM) procedure for obtaining approximate factors of matrix kernels (recently introduced by the author in [SIAM J. Appl. Math. 57 (2) (1997) 541]) is applicable to the class of matrix kernels found in elasticity, and in particular to problems in QNDE. First, as a motivating example, the kernel arising in the model of diffraction of skew incident elastic waves on a semi-infinite crack in an isotropic elastic space is studied. This was first examined in a seminal work by Achenbach and Gautesen [J. Acoust. Soc. Am. 61 (2) (1977) 413] and here three methods are offered for deriving distinct non-commutative factorizations of the kernel. Second, the WHAM method is employed to factorize the matrix kernel arising in the problem of radiation into an elastic half-space with mixed boundary conditions on its face. Third, brief mention is made of kernel factorization related to the problems of flexural wave diffraction by a crack in a thin (Mindlin) plate, and body wave scattering by an interfacial crack.  相似文献   

13.
This Note presents an experimental vibro-acoustic set-up that aims to reproduce the energy pumping phenomenon between an acoustic medium and an essentially nonlinear oscillator. It shows a one-way irreversible transfer of energy between the first acoustic mode in a tube and a thin visco-elastic membrane. To cite this article: B. Cochelin et al., C. R. Mecanique 334 (2006).  相似文献   
14.
The nature of the instability governing the self-sustained tones produced by a low Mach number plane jet impinging on a slotted plate, known as slot-tone, is identified experimentally. For a given Reynolds number, the natural shear-layer and the jet column mode frequencies of the free jet delimit the values of the measured slot-tone operating frequencies. The oscillations at lower frequencies are the result of the amplification of the jet column mode, and those at higher frequencies correspond to the shear layer instabilities. To cite this article: A. Billon et al., C. R. Mecanique 332 (2004).  相似文献   
15.
16.
In the last decade, Meshless Methods have found widespread application in different fields of engineering and science. Beyond novelty, their mathematical simplicity and numerical accuracy have been the key of their rapid dissemination. Among meshless techniques, RBF (Radial Basis Functions) based methods can be simple and general to solve the problems related to multiple areas of applied physics and engineering. In the specific field of acoustics, there are usually two possible approaches for solving a problem: time- and frequency-domain. In this paper, the authors propose a local time-domain approach to establish an efficient methodology for the solution of large-scale acoustic wave propagation problems. For this purpose, a local interpolation scheme, based on the reproduction of the local wave field using RBFs (MultiQuadric and Gaussian), is implemented and its accuracy is verified against known closed-form solutions. An explicit time-domain marching procedure is adopted, and the quality of the numerical results is also compared with that obtained using standard space-time Finite-Difference schemes. Additionally, the RBF interpolation model is used to simulate the propagation of a Ricker pulse in two simple test cases, and applied to simulate a more complex configuration, corresponding to an underwater sound propagation problem. In this frame, the results are also compared with those computed using a fourth-order in space and second-order in time Finite-Difference scheme.  相似文献   
17.
Flame stabilization during non-premixed combustion in curved ducts with a diameter of the order of magnitude of the premixed flame thickness of the reactants was investigated experimentally, since it has been established that this is a configuration with potential advantages in the context of “micro”-combustion. It was shown that, in such “mesoscale” tubes, a stable flame oscillation including extinction/re-ignition phenomena can be established for steady boundary conditions. These oscillations lead, under appropriate conditions, to sound emission in the 50–350 Hz range. This was a mode of stabilization in addition to the “classical” steady flamelet, stabilized through thermal losses to the duct walls at higher values of the Reynolds number. Curvature of the duct was shown to have minimal effect on reactant mixing, which was diffusion-controlled, but significantly affected flame thickness and stabilization. To probe the fuel-oxidizer mixing in the U-shaped, optically accessible tubes, laser induced fluorescence of acetone fuel dopant was used, and the flame structure was studied using OH PLIF. The various stabilization regimes are discussed in terms of the Reynolds and Dean numbers of the tube flow.  相似文献   
18.
Summary The theory of piezoelectric transducer vibrations, which may be treated as onedimensional, is developed in detail for thin discs vibrating in a pure thickness extensional mode. An effort has been made to obtain relations of general validity, which include losses, and which are in a simple explicit form convenient for practical calculations. The behaviour of transducers is discussed with special attention to their characteristics at the two fundamental frequencies, the so-called parallel and series resonances. Several peculiarities occur when transducers are coupled to media with considerably different acoustic impedances. These peculiarities are discussed and illustrated by numerical results for quartz and PZT 4 piezoelectric discs radiating into water, air and liquid hydrogen. The application of the theory to different types of vibrations is briefly illustrated for thin bars vibrating longitudinally. Short discussions are included on compound transducer systems, and on the properties of thin discs as receivers.  相似文献   
19.
An acoustic numerical code based on Ligthill's analogy is combined with large-eddy simulations techniques in order to evaluate the noise emitted by subsonic (M=0.7) and supersonic (M=1.4) round jets. We show first that, for centerline Mach number M=0.9 and Reynolds number Re=3.6×103, acoustic intensities compare satisfactorily with experimental data of the literature in terms of levels and directivity. Afterwards, high Reynolds number (Re=3.6×104) free and forced jets at Mach 0.7 and 1.4 are studied. Numerical results show that the jet noise intensity depends on the nature of the upstream mixing layer. Indeed, the subsonic jet is 4 dB quieter than the free jet when acting on this shear layer by superposing inlet varicose and flapping perturbations at preferred and first subharmonic frequency, respectively. The maximal acoustic level of the supersonic jet is, on the other hand, 3 dB lower than the free one with a flapping upstream perturbation at the second subharmonic. The results reported in this paper confirm previous works presented in the literature demonstrating that jet noise may be modified according to the inlet conditions. To cite this article: M. Maidi, C. R. Mecanique 334 (2006).  相似文献   
20.
多相孔隙储层声学研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
本文回顾了关于油、气、水及水合物多相孔隙储层的声学研究进展,提出了"储层声学"的概念,阐明了其研究意义、研究内涵和方法,并介绍了油、气、水及天然气水合物储层声波模拟的部分新的研究成果。指出应该从声学理论和实验等出发,结合声学储层探测和精细描述的实际情况,如利用声学原理圈闭和估算天然气水合物等,继续深入开展相关基础理论和实验研究工作,丰富储层声学研究内容,更加完善储层声学理论体系,为更好利用声学方法探测和评价储层提供坚实的物理基础和可能的技术支撑。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号