首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1698篇
  免费   396篇
  国内免费   290篇
化学   1016篇
晶体学   5篇
力学   161篇
综合类   8篇
数学   542篇
物理学   652篇
  2024年   10篇
  2023年   51篇
  2022年   95篇
  2021年   104篇
  2020年   149篇
  2019年   117篇
  2018年   98篇
  2017年   87篇
  2016年   108篇
  2015年   104篇
  2014年   135篇
  2013年   144篇
  2012年   120篇
  2011年   106篇
  2010年   68篇
  2009年   80篇
  2008年   87篇
  2007年   70篇
  2006年   90篇
  2005年   54篇
  2004年   66篇
  2003年   35篇
  2002年   54篇
  2001年   56篇
  2000年   29篇
  1999年   33篇
  1998年   39篇
  1997年   32篇
  1996年   29篇
  1995年   20篇
  1994年   12篇
  1993年   14篇
  1992年   14篇
  1991年   6篇
  1990年   11篇
  1989年   12篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有2384条查询结果,搜索用时 15 毫秒
81.
本文通过简单的一步水热法得到Ni2P-NiS双助催化剂,之后采用溶剂蒸发法将Ni2P-NiS与g-C3N4纳米片结合构建获得无贵金属的Ni2P-NiS/g-C3N4异质结。研究结果表明,优化后的复合材料具有良好的光催化产氢活性,其产氢速率最高可到6892.7 μmol·g-1·h-1,分别为g-C3N4 (150 μmol·g-1·h-1)、15%NiS/g-C3N4 (914.5 μmol·g-1·h-1)和15%Ni2P/g-C3N4 (1565.9 μmol·g-1·h-1)的46.1、7.5和4.4倍。这主要归因于Ni2P-NiS相比Ni2P和NiS单体具有更好的载流子转移能力,其与g-C3N4形成的肖特基势垒能有效促进光生载流子在二者界面上的分离,同时Ni2P-NiS能进一步降低析氢过电势,进而显著增强了表面析氢反应动力学。本研究为开发稳定、高效的非贵金属产氢助剂提供了实验基础。  相似文献   
82.
薛世翔  吴攀  赵亮  南艳丽  雷琬莹 《化学进展》2022,34(12):2686-2699
析氧反应(OER)是电催化裂解水、二次金属-空气电池和可再生燃料电池等绿色可持续能源储存和转化技术中的关键步骤,但其较高的势垒和迟滞的动力学过程限制了反应的效率。因此,设计开发高效、稳定的非贵金属催化剂是新能源领域面临的挑战之一。钴铁水滑石(CoFe LDH)材料具有独特的二维层状结构、丰富多变的化学组成、高分散的金属阳离子、优异的稳定性和成本低廉等优点,在OER反应中有广泛的应用前景。但不良的导电性和有限的活性位点阻碍了CoFe LDH的工业化应用。本文首先介绍了CoFe LDH的结构并阐述了其OER反应机理,接着总结了CoFe LDH的制备工艺,并详细综述了近年来提升其 OER性能的改性策略:插层剥离、空位制造、材料复合、离子取代和衍生物等。最后讨论了水滑石材料现阶段存在的问题和未来在能源转化和利用领域的发展方向。  相似文献   
83.
High-entropy transition metal chalcogenides (HE-TMCs) are advantageous in electrocatalytic applications compared to other entropy-stabilized systems owing to the greater orbital extension and energetic match of p-orbitals in chalcogenides with d-orbitals of the transition metals providing additional space to tailor their electronic structure. The high-configurational entropy of HE-TMCs leads to stabilization of cubic rock salt, wurtzite-type and hexagonally packed 2D structures. Due to the multi-element nature of HE-TMCs, the synergy among different elements results in tunable d- and p-band positions. As a consequence, the adsorption energies of electrocatalytic reaction intermediates can be tailored to enhance catalytic performance in water splitting and CO2 reduction. Furthermore, the entropy-stabilized disordered microstructural state of the material endows HE-TMCs with improved corrosion resistance. Despite recent advances in HE-TMC electrocatalysis, challenges such as identification and synthesis of efficient HE-TMCs as well as the identification of catalytically active sites and reaction mechanisms on HE-TMCs remain to be investigated.  相似文献   
84.
Controllable tailoring of metal-free/carbon-based nanostructures tends an encouraging way to enhance the bifunctional activity of electrodes, but a great challenge owing to the sluggish kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, a facile tempted-defects assisted fractionation strategy is presented to synthesize N, S, and O tri-doped metal-free catalyst (DE-TDAP). Due to this effective tempted-defects and heteroatoms interlinking in DE-TDAP, it delivers the lowest overpotential toward both the OER (346 mV) and HER (154 mV) at 10 mA cm?2. Remarkably, the DE-TDAP-electrode carries only a cell voltage of 1.81 V at 10 mA cm?2 for overall water splitting and long-term stability. Considerably, the density functional theory (DFT) calculation exposes that the tailored-defects in tri-doped interlinking could enhance bifunctional catalytic performance devising from lower Gibbs free energy of OER/HER intermediates on active sites. This struggle henceforth provides a perceptive understanding of the synergetic principles of heteroatom-interlinking-tailoring nanostructures in water splitting.  相似文献   
85.
Metal-organic coordination polymers (CP) have attracted the scientific attention for electrochemical water oxidation as it has the similar coordination structure like natural photosynthetic coordinated complex. However, the harsh synthesis conditions and bulky nature pose a major challenge in the field of catalysis. Herein, 3–5 nm CP particles synthesized at room temperature using aqueous solutions of Ni2+/Cu2+ and 2,5-dihydroxyterepthalic acid as precursor were applied for alkaline water and urea electrolysis. The overpotential required is only 300 mV at 10 mA cm−2 by Nano-Ni CP for water oxidation, with turnover frequency (TOF) of 21.4 s−1 which is around 8 times higher than its bulk-counterpart. Overall water and urea splitting were achieved with Nano-Cu (−) ∥ Nano-Ni (+) couple on Ni foam at 1.69 and 1.52 V to achieve 10 mA cm−2, respectively. High electrochemical surface area (ECSA), high TOF, and enhanced mass diffusion are found to be the key parameters responsible for the state-of-the-art water and urea splitting performances of nano-CPs as compared to their bulk counterparts.  相似文献   
86.
《中国化学快报》2021,32(9):2597-2616
Electrochemical overall water splitting is attracting a broad focus as a promising strategy for converting the electrical output of renewable resources into chemical fuels, specifically oxygen and hydrogen. However, the urgent challenge in water electrolysis is to search for low-cost, high-efficiency catalysts based on earth-abundant elements as an alternative to the high-cost but effective noble metal-based catalysts. The transition metal-based catalysts are more appealing than the noble metal catalysts because of its low cost, high performance and long stability. Some recent advances for the development in overall water splitting are reviewed in terms of transition metal-based oxides, carbides, phosphides, sulfides, and hybrids of their mixtures as hybrid bifunctional electrocatalysts. Concentrating on different catalytic mechanisms, recent advances in their structural design, controllable synthesis, mechanistic insight, and performance-enhancing strategies are proposed. The challenges and prospects for the future development of transition metal-based bifunctional electrocatalysts are also addressed.  相似文献   
87.
对多原子体系的量子动力学计算非常重要, 然而, 对含六原子以上的分子体系进行精确量子动力学计算仍具挑战性. 面向过程的基函数定制(PBFC)-并行迭代(PI)方法是一种高效的量子动力学方法, 已应用于对含九原子的丙二醛异构体系的氢迁移速率的精确量子计算. 本综述首先阐明了PBFC的基本思想, 之后重点回顾了PBFC-PI方法的具体内容、 该方法与其它方法的结合及其应用方面的新进展. 应用这些方法实现了对单氢迁移、 协同双氢迁移和分步双氢迁移3种类型基准体系的大规模并行计算, 有助于获得对氢迁移过程的新认识.  相似文献   
88.
染料敏化光电化学电池(DSPECs)是构建人工光合作用体系的潜在方式,其优势在于可通过优化染料结构来拓展可见光吸收范围,从根本上提高太阳能利用效率.染料敏化光阳极在受激发产生电荷分离之后,激发电子注入TiO2半导体导带,由于其导带位置比传统的可见光半导体,如BiVO4和Fe3O4等相比较负,因此理论上可以在较小的偏压下取得较大的光电转换效率,也更有利于和光阴极相耦合实现无偏压分解水.电荷传输动力学研究表明,注入到TiO2导带的电子向氧化态光敏剂和催化剂的回传是造成体系能量损失的主要原因,集中体现在光电流密度和效率的降低.目前,已经报道了多种手段来减少DSPECs光阳极表面的电子回传,包括使用带有长烷基链的锚定基团对水氧化催化剂进行修饰,在半导体表面引入电子中介体以及使用核-壳结构的基底等.其中,SnO2/TiO2基底被广泛应用在染料敏化光阳极中,这种基底可以提高光生电子的注入效率,同时两种金属氧化物之间的异质结有效抑制了电子回传,从而提高了DSPECs的光电活性.然而,核-壳结构基底需要使用原子层沉积技术来制备,所以操作相对复杂.本文基于Ru-bda(bda=2,2'-联吡啶-6,6'-二羧酸)结构的分子水氧化催化剂和带有磷酸修饰基团的三联吡啶钌通过共吸附的方式制备染料敏化光阳极,在不使用核-壳结构基底的情况下,利用吡啶衍生物对TiO2电极表面的修饰来减少电子回传.本文利用一系列吡啶衍生物作修饰负载在TiO2光阳极上(TiO2|RuP,1;RuP=Ru(4,4'-(PO3H2)2-2,2'-联吡啶)(2,2'-联吡啶)2;1=Ru(bda)(L)2,bda=2,2'-联吡啶-6,6'-二羧酸,L=(10-吡啶-4-基氧基)癸基)膦酸.在100 mW/cm2的白光照射下(λ>400 nm),TiO2|RuP,1,P1(P1=4-羟基吡啶)光阳极在0.4 V(vs.NHE)的外加偏压下获得了1 mA/cm2的光电流密度,其光电流比未修饰吡啶的光阳极增加了42%.同时,其入射光子-电流转化效率在470 nm波长的单色光光照下达到最大,为13.6%.经过吡啶衍生物所修饰的光阳极光电性能和文献中利用核-壳结构基底所制备的类似光阳极性能相当,且光电流密度随吡啶对位取代基供电性能的增强而增大.瞬态吸收光谱和电化学阻抗谱测试表明,吡啶吸附在光阳极上能有效地抑制界面上的电子回传,延长电荷分离寿命,是光电流增加的根本原因,这也表明有机小分子修饰是提高染料敏化光阳极性能的简单、有效的策略.  相似文献   
89.
光电化学分解水可将太阳能转换为绿色的氢能,为目前的能源危机和环境问题提供了一种理想的解决方案.在分解水反应中,涉及四空穴过程的产氧半反应是制约性能的关键步骤,往往需要在半导体表面沉积电催化剂以加速产氧反应动力学.因此,全面理解电催化剂在光电化学分解水体系中的作用至关重要.在目前的产氧电催化剂中,过渡金属羟基氧化物电催化剂(MOOH,M=Fe,Co,Ni)因其环保、廉价、高效以及稳定的特性,已被广泛用于半导体光阳极分解水器件中.而且,MOOH可用简单的电沉积方法沉积在光电极表面,易于大面积制备.然而,电沉积法制备的MOOH具有复杂的结构,对其作用机制的全面理解更加困难.因此,本文以电沉积MOOH修饰的硅基光阳极(n+p-Si/SiOx/Fe/FeOx/MOOH)作为模型,研究了不同电催化剂对硅光阳极光电化学产氧性能的影响.实验发现电催化剂的界面优化在电催化剂修饰的光电极中发挥着重要作用,这是因为优化的界面可以提升界面电荷传输,提供更多的催化反应活性位点以及更高的本征催化活性,从而更有利于光解水性能的提升.该项研究揭示了电催化剂在光解水器件中的作用,并为今后高效光解水器件的设计提供了一定指导.首先在多晶n+p-Si基底上热蒸镀了一层30 nm的金属Fe膜,并通过电化学活化将Fe膜表面转换为FeOx得到Fe/FeOx(记作aFe)界面层,然后利用电沉积方法制备MOOH表面修饰层,最终得到n+p-Si/SiOx/aFe:MOOH光阳极.X射线光电子能谱、拉曼光谱以及扫描电子显微镜表面元素成像的表征结果均证实电极表面由于界面层金属Fe元素的掺杂而形成了Fe1-xNixOOH.在模拟太阳光下用于光解水产氧时,n+p-Si/SiOx/aFe:NiOOH电极的起始电位为~1.01 VRHE(相对于可逆氢电极的电势),在1.23 VRHE下的光电流为38.82 mA cm-2,显著优于n+p-Si/SiOx/aFe、n+p-Si/SiOx/aFe:FeOOH以及n+p-Si/SiOx/aFe:CoOOH三个对比样品,且其稳定性达到75 h.另外,我们发现n+p-Si/SiOx/aFe:MOOH电极的光电化学产氧性能均显著高于n+p-Si/SiOx/aFe电极,且p++-Si/SiOx/aFe:MOOH的电催化产氧性能也高于p++-Si/SiOx/MOOH,不仅证明了aFe界面层对Si与MOOH层之间的界面接触作用的有效调控,而且表明双电催化剂体系(aFe:MOOH)的电催化产氧活性高于单电催化剂(MOOH).热力学分析表明,n+p-Si/SiOx/aFe:MOOH光阳极的光电压大小与其光解水产氧性能并不一致,从而排除了热力学因素对性能的关键影响.进一步从塔菲尔斜率、电化学活性表面积和电化学阻抗谱对各电极的动力学进行了分析,证明了动力学因素在上述光阳极产氧性能中的主导作用.同时发现,由于aFe:NiOOH双电催化剂具有更高的本征电催化产氧性能,提供了更多的表面活性位点以及更有效地促进了光生载流子的传输,对动力学的提升效果更显著,从而使n+p-Si/SiOx/aFe:NiOOH光阳极表现出最高的光解水产氧性能.  相似文献   
90.
王尧  黄寻  魏子栋 《催化学报》2021,42(8):1269-1286
氢能因其能量密度高、清洁无污染等特点,作为替代化石燃料的能源载体得到了广泛的研究.如何清洁高效地制备氢气受到了大量研究者的关注.当前,以化石能源的热反应所得副产氢气是主要来源.然而,采用该类方法不仅不能摆脱化石能源的使用以及温室气体的排放,还会造成生产氢气的纯度不高,碳氧化物杂质浓度过高的问题,严重影响氢气的后续使用.采用可再生能源(太阳能、风能等)所产富余电,进行电解水制氢,产生的氢气不含碳氧化合物杂质,纯度很高,可以真正实现碳的零排放,被认为是未来氢气来源的重要方式.目前,电解水制氢在制氢市场的所占份额较小,而造成这样局面的主要因素是该过程中的高能耗问题.为了降低能耗,开发高效催化剂加速两个电极上的电解反应的动力学尤为重要.近年,金属单原子催化剂(SACs)因其独特的结构,在很多研究中被用作电解水催化剂,进而开发出大量高性能的金属单原子电解水催化剂.本文综述了近年SACs在电解水催化方面的应用.首先,针对电解水反应本身,总结了阴阳极两侧的电极反应机制以及影响电极催化性能的关键吸附中间物种;然后,根据载体的不同,即合金、碳以及其它化合物将SACs分为三类,总结了相关电解水催化研究现状,并且针对不同类型SACs目前的发展情况,提出了它们各自存在的问题.其次,进一步总结了影响SACs电解水催化活性的因素,提出了四种决定SACs催化性能的影响因子,分别为金属原子的固有元素性质、配位环境、几何结构和负载量;同时讨论了这四类影响因素对SACs催化活性的影响机制,总结了调控各类影响因素的方法,为SACs的设计提出了一些建议.最后,展望了SACs在电解水催化中的应用,探讨了SACs在催化剂设计及催化机制研究方面的问题,提出了SACs在电解水催化中的未来发展方向.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号