首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6552篇
  免费   1214篇
  国内免费   512篇
化学   1901篇
晶体学   44篇
力学   523篇
综合类   47篇
数学   157篇
物理学   5606篇
  2024年   2篇
  2023年   23篇
  2022年   124篇
  2021年   126篇
  2020年   147篇
  2019年   91篇
  2018年   134篇
  2017年   242篇
  2016年   277篇
  2015年   244篇
  2014年   472篇
  2013年   526篇
  2012年   376篇
  2011年   457篇
  2010年   322篇
  2009年   435篇
  2008年   518篇
  2007年   454篇
  2006年   410篇
  2005年   410篇
  2004年   378篇
  2003年   333篇
  2002年   278篇
  2001年   243篇
  2000年   232篇
  1999年   188篇
  1998年   161篇
  1997年   154篇
  1996年   115篇
  1995年   105篇
  1994年   72篇
  1993年   44篇
  1992年   50篇
  1991年   43篇
  1990年   24篇
  1989年   20篇
  1988年   9篇
  1987年   12篇
  1986年   7篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1957年   2篇
排序方式: 共有8278条查询结果,搜索用时 15 毫秒
61.
Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation.  相似文献   
62.
通过镁离子内扩散铌酸锂单晶光纤,以改变晶纤表层的折射率,首次在国内实现了沿不同轴向生长、不同掺杂的铌酸锂单晶光纤的芯-包层波导结构。通过匹配扩散温度、扩散时间、MgO膜厚等扩散参数及选择合适的晶纤直径,实现了晶纤具有阶跃和抛物折射率分布的包层,并对包层晶纤的模式特性进行了观察,得到低次模传输。  相似文献   
63.
The use of glass fiber as a support material for a surface compound serving to generate gaseous standard mixtures of ethene is described. The technique is based on the process of thermal decomposition of the surface compound in a desorber connected on‐line via a multi‐port valve to the calibrated device. The surface compound undergoes thermal decomposition at 245°C, yielding known amounts of ethene. The method enables on‐line preparation of a standard mixture immediately before the calibration step. Consequently, it can be also applied for the generation of standard mixtures containing volatile, malodorous, unstable, and toxic compounds.  相似文献   
64.
The sol-gel processing was applied to the fabrication of PbTiO3 fibers. Pb(CH3COO)2·3H2O and Ti(OC3H 7 i )4 were refluxed with stirring in 2-methoxyethanol to form Pb-methoxyethoxide and Ti-methoxyethoxide, respectively, followed by mixing with stirring in 2-methoxyethanol to form Pb−Ti double alkoxide. The hydrolysis and polycondensation reaction of this double alkoxide gave polymerized products, and as a result the viscosity of the solution increased, suggesting that linear polymers were produced through the hydrolysis and polycondensation reaction. Homogeneous PbTiO3 gel fibers were drawn from the spinnable viscous solutions, which were wellcrystallized into perovskite type PbTiO3 at 650°C. The heat-treated fibers were a few centimeters long and from 10 to 100 μm in diameter. The fiber was made up of extremely uniform grains. Electron diffraction revealed a preferred growth of (101) planes along the fiber axis, which might be due to the linear molecular characteristics of the alkoxide.  相似文献   
65.
Published data on silicon carbide nanotubes (SiC-NT) are analyzed. According to theoretical calculations, single-layer SiC-NTs do not dissociate, but they have not yet been detected experimentally. According to the experimental data, metastable SiC-NTs with walls consisting of several layers and nanotube fibers were produced. The optimized structure of single-layer SiC-NTs was calculated by the RHF/6-31G quantum-chemical method. The possibility of obtaining SiC-NTs by gas-phase chemical deposition from methyltrichlorosilane in the temperature range of 800–1000 °C was investigated. Nanofibers and polygrained SiC nanotubes were obtained, but ordinary layer SiC nanotubes were not detected. To remove the inconsistencies it was first proposed to classify the nanotubes according to the structure of their walls, separating all the SiC-NTs into three types: 1) ordinary layer nanotubes with rolled layers, similar to carbon nanotubes; 2) polynanocrystalline nanotubular fibers or nanotubes with walls consisting of linked differently oriented nanograins; 3) monocrystalline synthetic nanotubes with ideal crystalline walls. It was concluded that the ordinary SiC-NTs of the first type are unstable with the exception of one-or two-layer nanotubes; stable SiC-NTs of the first type and SiC-NTs of the third type have not yet been discovered; only nanotubular fibers of the second type were obtained experimentally. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 1, pp. 3–13, January–February, 2006.  相似文献   
66.
A capillary gas chromatographic method is described for the quantitative determination of liquid paraffin in blood. Paraffin is extracted from blood into n-heptane. After solvent evaporation and dissolution of the residue in 100–200 μl n-heptane one μl is injected into a gas chromatograph fitted with a fused silica capillary column (Permabond® OV-1-CB-0.1, 10 m × 0.32 mm i.d.) and flame ionization detector. Analysis is performed by using an oven program [50°C (3 min)?285°C (5 min), rise 10%min]. The sensitivity (1.5 ng hexadecane) and the reproducibility prove the applicability of the method for the determination of liquid paraffin in blood and for the study of the stability of the liquid paraffin hollow fiber membranes used in an extracorporeal liver support system.  相似文献   
67.
The rheology of the melt hollow fiber spinning process is examined in the thin filament limit. The resulting thin filament equations are also applicable to single-phase and two-phase extensional flows. Using a novel numerical solution procedure, the sensitivity of the fiber spinning equations to material property and process variations is investigated. Fiber geometry is directly controlled by the mass flowrates of the core and clad fluids while the spinline tension is most strongly influenced by clad viscosity. A maximum can occur in the clad stress profile if a core liquid is used and the ratio of core to clad viscosity increases greatly with temperature. Isothermal spinning of high viscosity clad liquids with either a core gas or liquid is unstable for draw ratios greater than 20.2 as found for solid fibers.  相似文献   
68.
Since hollow-fiber flow field-flow fractionation (HF FIFFF) utilizes a cylindrical channel made of a hollow-fiber membrane, which is inexpensive and simple in channel assembly and thus disposable, interests are increasing as a potential separation device in cells, proteins, and macromolecules. In this study, performance of HF FIFFF of proteins is described by examining the influence of flow rate conditions and length of fiber (polyacrylonitrile or PAN in this work) on sample recovery as well as experimental plate heights. The interfiber reproducibility in terms of separation time and recovery was also studied. Experiments showed that sample recovery was consistent regardless of the length of fiber when the effective field strength (equivalent to the mean flow velocity at the fiber wall) and the channel void time were adjusted to be equivalent for channels of various fiber lengths. This supported that the majority of sample loss in HF FIFFF separation of apoferritin and their aggregates may occur before the migration process. It is finally demonstrated that HF FIFFF can be applied for characterizing the reduction in Stokes' size of low density lipoproteins from blood plasma samples obtained from patients having coronary artery disease and from healthy donors.  相似文献   
69.
The history and present state of the art in the chemistry of mesophase pitch, which is an important precursor for carbon fiber and other high-performance industrial carbons, are reviewed relative to their structural properties. The structural concepts in both microscopic and macroscopic views are summarized in terms of the sp(2) carbon hexagonal plane as a basic unit common to graphitic materials, its planar stacking in clusters, and cluster assembly into microdomains and domains, the latter of which reflect the isochromatic unit of optical anisotropy. Such a series of structural units is described in a semiquantitative manner corresponding to the same units of graphitic materials, although the size and stacking height of the hexagonal planes (graphitic sheets) are very different. Mesophase pitch is a liquid crystal material whose basic structural concepts are maintained in the temperature range of 250 to 350 degrees C. The melt flow and thermal properties are related to its micro- and mesoscopic structure. The structure of mesophase-pitch-based carbon fiber of high tensile strength, modulus, and thermal conductivity has been formed through spinning, and has inherited the same structural concepts of mesophase pitch. Stabilization settles the structure in successive heat treatments up to 3000 degrees C. Carbonization and graphitization enable growth of the hexagonal planes and their stacking into units of graphite. Such growth is governed and controlled by the alignment of micro- and mesoscopic structures in the mesophase pitch, which define the derived carbon materials as nanostructural materials. Their properties are controlled by the nanoscopic units that are expected to behave as nanomaterials when appropriately isolated or handled.  相似文献   
70.
The anodic oxidation of the carbon felt Carbonetcalon results in the formation of surface defects which serve as centers of strong adsorption of PdII, NiII, and CuII ions. The electrochemical reduction of adsorbed ions makes it possible to obtain metallic catalysts, which undergo multiple redox cycles without loss of metal. The catalysts are characterized by high dispersity of the reduced phase, high adsorption capacity with respect to hydrogen, and 100% selectivity in hydrogenation of acetophenone. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 81–85, January 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号