首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2475篇
  免费   186篇
  国内免费   196篇
化学   265篇
晶体学   17篇
力学   168篇
综合类   20篇
数学   1246篇
物理学   1141篇
  2024年   3篇
  2023年   56篇
  2022年   48篇
  2021年   64篇
  2020年   83篇
  2019年   57篇
  2018年   54篇
  2017年   73篇
  2016年   70篇
  2015年   59篇
  2014年   88篇
  2013年   197篇
  2012年   64篇
  2011年   112篇
  2010年   89篇
  2009年   139篇
  2008年   168篇
  2007年   144篇
  2006年   143篇
  2005年   120篇
  2004年   118篇
  2003年   108篇
  2002年   136篇
  2001年   101篇
  2000年   104篇
  1999年   85篇
  1998年   69篇
  1997年   62篇
  1996年   33篇
  1995年   13篇
  1994年   31篇
  1993年   19篇
  1992年   21篇
  1991年   19篇
  1990年   9篇
  1989年   13篇
  1988年   14篇
  1987年   10篇
  1986年   4篇
  1985年   6篇
  1984年   13篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   6篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
排序方式: 共有2857条查询结果,搜索用时 375 毫秒
51.
Let and be anisotropic quadratic forms over a field of characteristic not . Their function fields and are said to be equivalent (over ) if and are isotropic. We consider the case where and is divisible by an -fold Pfister form. We determine those forms for which becomes isotropic over if , and provide partial results for . These results imply that if and are equivalent and , then is similar to over . This together with already known results yields that if is of height and degree or , and if , then and are equivalent iff and are isomorphic over .

  相似文献   

52.
53.
The force fields, in-plane vibrations, and relative intensities of Raman spectra have been calculated and analyzed for the N1H and N3H tautomers of imidazole, imidazolium cation, and their model structures. The results obtained for the isolated state of imidazole correspond to the intramolecular mechanism of proton transfer.  相似文献   
54.
A straightforward discussion on how to generate molecular fields is developed within the postulates of quantum mechanics. The theoretical formalism points towards the generalization and extension of the well-known molecular field forms, associated to density function and electrostatic molecular potential (EMP), including another category of fields associated to quantum molecular similarity measures. The results show that the new formalism can be easily applied to obtain an unlimited number of new information about molecular behavior.  相似文献   
55.
QM/MM methods have been developed as a computationally feasible solution to QM simulation of chemical processes, such as enzyme-catalyzed reactions, within a more approximate MM representation of the condensed-phase environment. However, there has been no independent method for checking the quality of this representation, especially for highly nonisotropic protein environments such as those surrounding enzyme active sites. Hence, the validity of QM/MM methods is largely untested. Here we use the possibility of performing all-QM calculations at the semiempirical PM3 level with a linear-scaling method (MOZYME) to assess the performance of a QM/MM method (PM3/AMBER94 force field). Using two model pathways for the hydride-ion transfer reaction of the enzyme dihydrofolate reductase studied previously (Titmuss et al., Chem Phys Lett 2000, 320, 169-176), we have analyzed the reaction energy contributions (QM, QM/MM, and MM) from the QM/MM results and compared them with analogous-region components calculated via an energy partitioning scheme implemented into MOZYME. This analysis further divided the MOZYME components into Coulomb, resonance and exchange energy terms. For the model in which the MM coordinates are kept fixed during the reaction, we find that the MOZYME and QM/MM total energy profiles agree very well, but that there are significant differences in the energy components. Most significantly there is a large change (approximately 16 kcal/mol) in the MOZYME MM component due to polarization of the MM region surrounding the active site, and which arises mostly from MM atoms close to (<10 A) the active-site QM region, which is not modelled explicitly by our QM/MM method. However, for the model where the MM coordinates are allowed to vary during the reaction, we find large differences in the MOZYME and QM/MM total energy profiles, with a discrepancy of 52 kcal/mol between the relative reaction (product-reactant) energies. This is largely due to a difference in the MM energies of 58 kcal/mol, of which we can attribute approximately 40 kcal/mol to geometry effects in the MM region and the remainder, as before, to MM region polarization. Contrary to the fixed-geometry model, there is no correlation of the MM energy changes with distance from the QM region, nor are they contributed by only a few residues. Overall, the results suggest that merely extending the size of the QM region in the QM/MM calculation is not a universal solution to the MOZYME- and QM/MM-method differences. They also suggest that attaching physical significance to MOZYME Coulomb, resonance and exchange components is problematic. Although we conclude that it would be possible to reparameterize the QM/MM force field to reproduce MOZYME energies, a better way to account for both the effects of the protein environment and known deficiencies in semiempirical methods would be to parameterize the force field based on data from DFT or ab initio QM linear-scaling calculations. Such a force field could be used efficiently in MD simulations to calculate free energies.  相似文献   
56.
Summary We compare two methods (Mulliken charges and a distributed multipole analysis, DMA) of representing an ab initio charge distribution for calculating the electrostatic field and potential outside the molecule, using pyrimidine and the RNA base uracil as examples. This is done using a 3-D graphical display of the electrostatic fields, which, when used with real-time rotation, zooming and clipping, has many advantages for qualitatively assessing the electrostatic interactions of a molecule. The errors involved in using Mulliken point charges may be of similar magnitude to the total electrostatic field in regions which are important in recognition processes. The DMA representation automatically includes the anisotropic electrostatic effects of non-spherical features in the charge distribution of each atom, and yet the displayed electrostatic fields around the atoms which have lone-pair density do not show marked anisotropy.  相似文献   
57.
Summary The problem of including solvent effects in molecular mechanics calculations is discussed. It is argued that the neglect of charge-solvent (solvation) interactions can introduce significant errors. The finite difference Poisson-Boltzmann (FDPB) method for calculating electrostatic interactions is summarized and is used as a basis for introducing a new pairwise energy term which accounts for charge-solvent interactions. This term acts between all pairs of atoms usually considered in molecular mechanics calculations and can be easily incorporated into existing force fields. As an example, a parameterization is developed for the CHARMm force field and the results compared to the predictions of the FDPB method. An approach to the realistic incorporation of solvent screening into force fields is also outlined.  相似文献   
58.
59.
A class II valence force field covering a broad range of organic molecules has been derived employing ab initio quantum mechanical "observables." The procedure includes selecting representative molecules and molecular structures, and systematically sampling their energy surfaces as described by energies and energy first and second derivatives with respect to molecular deformations. In this article the procedure for fitting the force field parameters to these energies and energy derivatives is briefly reviewed. The application of the methodology to the derivation of a class II quantum mechanical force field (QMFF) for 32 organic functional groups is then described. A training set of 400 molecules spanning the 32 functional groups was used to parameterize the force field. The molecular families comprising the functional groups and, within each family, the torsional angles used to sample different conformers, are described. The number of stationary points (equilibria and transition states) for these molecules is given for each functional group. This set contains 1324 stationary structures, with 718 minimum energy structures and 606 transition states. The quality of the fit to the quantum data is gauged based on the deviations between the ab initio and force field energies and energy derivatives. The accuracy with which the QMFF reproduces the ab initio molecular bond lengths, bond angles, torsional angles, vibrational frequencies, and conformational energies is then given for each functional group. Consistently good accuracy is found for these computed properties for the various types of molecules. This demonstrates that the methodology is broadly applicable for the derivation of force field parameters across widely differing types of molecular structures. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1782-1800, 2001  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号