首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2559篇
  免费   454篇
  国内免费   198篇
化学   1230篇
晶体学   11篇
力学   74篇
综合类   51篇
数学   101篇
物理学   1744篇
  2024年   8篇
  2023年   52篇
  2022年   132篇
  2021年   172篇
  2020年   147篇
  2019年   166篇
  2018年   96篇
  2017年   174篇
  2016年   166篇
  2015年   181篇
  2014年   232篇
  2013年   222篇
  2012年   186篇
  2011年   190篇
  2010年   121篇
  2009年   123篇
  2008年   133篇
  2007年   140篇
  2006年   71篇
  2005年   92篇
  2004年   91篇
  2003年   50篇
  2002年   57篇
  2001年   26篇
  2000年   25篇
  1999年   27篇
  1998年   30篇
  1997年   29篇
  1996年   15篇
  1995年   9篇
  1994年   9篇
  1993年   11篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1976年   1篇
  1971年   1篇
排序方式: 共有3211条查询结果,搜索用时 15 毫秒
111.
Paramagnetic chemical exchange saturation transfer (paraCEST) agents are well-suited for imaging tissue pH because the basis of CEST, chemical exchange, is inherently sensitive to pH. Several previous pH-sensitive paraCEST agents were based on an exchanging Ln3+-bound water molecule as the CEST antenna but this design often added additional line-broadening to the bulk water signal due to T2 exchange. We report herein a pH-sensitive paraCEST agent that lacks an inner-sphere water molecule but contains one Ln-bound −OH group for CEST activation. The Yb3+ complex, Yb( 1 ), displayed a single, highly shifted CEST peak originating from the exchangeable Yb-OH proton, the frequency of which changed over the biologically relevant pH range. CEST images of phantoms ranging in pH from 6 to 8 demonstrate the potential of this agent for imaging pH. Initial rodent imaging studies showed that Gd( 1 ) remains in the vascular system much longer than anticipated but is cleared slowly via renal filtration.  相似文献   
112.
Optical chirality sensing has attracted a lot of interest due to its potential in high-throughput screening in chirality analysis. A molecular sensor is required to convert the chirality of analytes into optical signals. Although many molecular sensors have been reported, sensors with wide substrate scope remain to be developed. Herein, we report that the amide naphthotube-based chirality sensors have an unprecedented wide scope for chiroptical sensing of organic molecules. The substrates include, but are not limited to common organic products in asymmetric catalysis, chiral molecules with inert groups or remote functional groups from their chiral centers, natural products and their derivatives, and chiral drugs. The effective chirality sensing is based on biomimetic recognition in water and on effective chirality transfer through guest-induced formation of a chiral conformation of the sensors. Furthermore, the sensors can be used in real-time monitoring on reaction kinetics in water and in determining absolute configurations and ee values of the products in asymmetric catalysis.  相似文献   
113.
李仲秋  吴增强  夏兴华 《色谱》2020,38(10):1189-1196
近年来,随着材料科学、微纳加工技术和微纳尺度物质传输理论的发展,纳通道技术得到了越来越多的研究和关注。纳通道包括生物纳通道和人工纳通道,其孔径通常为1~100 nm。在这一尺度下,通道表面与通道内物质之间的作用概率大大增强,使得纳通道表现出许多与宏观体系不同的物质传输特性,例如通道表面电荷与通道内离子之间的静电作用产生了离子选择性,通道内电化学势的不对称分布产生了离子整流特性,物质传输过程中占据通道产生了阻塞脉冲特性等。纳通道中的这些物质传输特性在传感、分离、能源等领域具有广泛应用,例如通过对纳通道进行功能化修饰可以实现门控离子传输;利用亚纳米尺度的通道可以实现单分子传感;利用通道与传输物质之间的相互作用可以实现离子、分子、纳米粒子的分离;利用纳通道的离子选择性可以在通道内实现电荷分离,将不同形式的能量(如光、热、压力、盐差等)高效转化为电能。纳通道技术是化学、材料科学、纳米技术等多学科的交叉集合,在解决生物、环境、能源等基本问题方面具有良好的前景。该文综述了近10年来与纳通道物质传输理论以及纳通道技术应用相关的前沿研究,梳理了纳通道技术的发展过程,并对其在各个领域的应用进行了总结与展望。  相似文献   
114.
ABSTRACT

The Langmuir monolayer is a special class of lyotropic liquid crystalline system wherein phase transition essentially depends on surface density, temperature and ion-content in the aqueous medium. The variety of surface phases can be transferred onto devices by the Langmuir–Blodgett (LB) technique. The Langmuir monolayer of pristine single-walled carbon nanotubes (SWCNTs) exhibited gas and liquid-like phases. The LB film of SWCNTs shows target surface pressure dependent interesting morphologies. The methane gas sensing using parallel alignment of SWCNTs was found to be better than that of randomly oriented SWCNTs. The SWCNTs can be functionalised chemically to enhance the ease of film processability and affinity towards analytes. These are essential parameters for the development of a sensor. In this article, we present our work on Langmuir monolayer and LB films of octadecylamine functionalised SWCNTs (ODACNTs) and its sensing application towards bio-analytes, e.g. L-aspartic acid and bovine serum albumin. The sensing performance of LB film of ODACNTs was compared with that of spin-coated films of ODACNTs. The sensing performance of LB films of ODACNTs indicated a potential platform for bio-sensing application.  相似文献   
115.
We report the first chemical synthesis of eurysterol A, a cytotoxic and antifungal marine steroidal sulfate with a unique C8−C19 oxy-bridged cholestane skeleton. After C19 hydroxylation of cholesteryl acetate, used as an inexpensive commercial starting material, the challenging oxidative functionalization of ring B was achieved by two different routes to set up a 5α-hydroxy-7-en-6-one moiety. As a key step, an intramolecular oxa-Michael addition was exploited to close the oxy-bridge (8β,19-epoxy unit). DFT calculations show this reversible transformation being exergonic by about −30 kJ mol−1. Along the optimized (scalable) synthetic sequence, the target natural product was obtained in only 11 steps in 5 % overall yield. In addition, an access to (isomeric) 7β,19-epoxy steroids with a previously unknown pentacyclic ring system was discovered.  相似文献   
116.
Pyrene-based cyclophanes have been synthesized with the aim to realize a bellows-type sensing mechanism for the ratiometric detection of nucleotide concentrations in a buffered aqueous solution. The sensing mechanism involves the encapsulation of a nucleobase between two pyrene rings, which affects the monomer-excimer equilibrium of the receptor in the excited state. The nature of the spacer and its connection pattern to pyrene rings have been varied to achieve high selectivity for ATP. The 1,8-substituted pyrene-based cyclophane with the 2,2’-diaminodiethylamine spacer demonstrates the best selectivity for ATP showing a 50-fold increase in the monomer-excimer emission ratio upon saturation with the nucleotide. The receptor can detect ATP within the biological concentrations range over a wide pH range. NMR and spectroscopic studies have revealed the importance of hydrogen bonding and stacking interactions for achieving a required receptor selectivity. The probe has been successfully applied for the real-time monitoring of creatine kinase activity.  相似文献   
117.
《中国化学快报》2020,31(8):2045-2049
Ethylene (C2H4), as a plant hormone, its emission can be served as an indicator to measure fruit quality. Due to the limited physiochemical reactivity of C2H4, it is a challenge to develop high performance C2H4 sensors for fruit detection. Herein, this paper presents a resistive-type C2H4 sensor based on Pd-loaded tin oxide (SnO2). The C2H4 sensing performance of proposed sensor are tested at optimum operating temperature (250 °C) with ambient relative humidity (51.9% RH). The results show that the response of Pd-loaded SnO2 sensor (11.1, Ra/Rg) is about 3 times higher than that of pristine SnO2 (3.5) for 100 ppm C2H4. The response time is also significantly shortened from 7 s to 1 s compared with pristine SnO2. Especially, the Pd-loaded SnO2 sensor possesses good sensitivity (0.58 ppm−1) at low concentration (0.05–1 ppm) with excellent linearity (R2 = 0.9963) and low detection limit (50 ppb). The high sensing performance of Pd-loaded SnO2 are attributed to the excellent adsorption and catalysis effects of Pd nanoparticle. Meaningfully, the potential applications of C2H4 sensor are performed for monitoring the maturity and freshness of fruits, which presents a promising prospect in fruit quality evaluation.  相似文献   
118.
Luminescent quantum dots (QDs) are colloidal semiconductor nanocrystals consisting of an inorganic core covered by a molecular layer of organic surfactants. Although QDs have been known for more than thirty years, they are still attracting the interest of researchers because of their unique size-tunable optical and electrical properties arising from quantum confinement. Moreover, the controlled decoration of the QD surface with suitable molecular species enables the rational design of inorganic-organic multicomponent architectures that can show a vast array of functionalities. This minireview highlights the recent progress in the use of surface-modified QDs – in particular, those based on cadmium chalcogenides – as supramolecular platforms for light-related applications such as optical sensing, triplet photosensitization, photocatalysis and phototherapy.  相似文献   
119.
Precise assessment of temperature is crucial in many physical, technological, and biological applications where optical thermometry has attracted considerable attention primarily due to fast response, contactless measurement route, and electromagnetic passivity. Rare-earth-doped thermographic phosphors that rely on ratiometric sensing are very efficient near and above room temperature. However, being dependent on the thermally-assisted migration of carriers to higher excited states, they are largely limited by the quenching of the activation mechanism at low temperatures. In this paper, we demonstrate a strategy to pass through this bottleneck by designing a linear colorimetric thermometer by which we could estimate down to 4 K. The change in perceptual color fidelity metric provides an accurate measure for the sensitivity of the thermometer that attains a maximum value of 0.86 K−1. Thermally coupled states in Er3+ are also used as a ratiometric sensor from room temperature to ∼140 K. The results obtained in this work clearly show that Yb3+−Er3+ co-doped NaGdF4 microcrystals are a promising system that enables reliable bimodal thermometry in a very wide temperature range from ultralow (4 K) to ambient (290 K) conditions.  相似文献   
120.
薄膜基荧光传感器是继离子迁移谱之后,业界公认的一种最具发展潜力的微痕量物质探测技术.由于其具有灵敏性、便携性、实时检测、响应速度快、易于制造、不污染待测体系等优点,在食品检测、环境监测、质量控制和生物医学分析等领域引起了广泛的关注和研究.本文主要综述了近年来薄膜基荧光传感在挥发性气体检测、有毒化学品检测、爆炸物检测、溶液相离子检测以及生物监测等领域的研究进展,并提出了薄膜基荧光传感所面临的挑战与未来的发展方向.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号