首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10852篇
  免费   3311篇
  国内免费   1163篇
化学   3965篇
晶体学   69篇
力学   21篇
综合类   77篇
数学   809篇
物理学   10385篇
  2024年   45篇
  2023年   189篇
  2022年   349篇
  2021年   538篇
  2020年   475篇
  2019年   422篇
  2018年   387篇
  2017年   388篇
  2016年   545篇
  2015年   493篇
  2014年   686篇
  2013年   929篇
  2012年   723篇
  2011年   824篇
  2010年   658篇
  2009年   664篇
  2008年   861篇
  2007年   832篇
  2006年   795篇
  2005年   682篇
  2004年   589篇
  2003年   526篇
  2002年   503篇
  2001年   367篇
  2000年   410篇
  1999年   270篇
  1998年   287篇
  1997年   188篇
  1996年   109篇
  1995年   104篇
  1994年   69篇
  1993年   61篇
  1992年   60篇
  1991年   43篇
  1990年   48篇
  1989年   47篇
  1988年   24篇
  1987年   17篇
  1986年   25篇
  1985年   20篇
  1984年   18篇
  1983年   7篇
  1982年   7篇
  1981年   8篇
  1979年   3篇
  1978年   7篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Graphene nanostructures are promising candidates for future nanoelectronics and solid-state quantum information technology. In this review we provide an overview of a number of electron transport experiments on etched graphene nanostructures. We briefly revisit the electronic properties and the transport characteristics of bulk, i.e., two-dimensional graphene. The fabrication techniques for making graphene nanostructures such as nanoribbons, single electron transistors and quantum dots, mainly based on a dry etching ??paper-cutting?? technique are discussed in detail. The limitations of the current fabrication technology are discussed when we outline the quantum transport properties of the nanostructured devices. In particular we focus here on transport through graphene nanoribbons and constrictions, single electron transistors as well as on graphene quantum dots including double quantum dots. These quasi-one-dimensional (nanoribbons) and quasi-zero-dimensional (quantum dots) graphene nanostructures show a clear route of how to overcome the gapless nature of graphene allowing the confinement of individual carriers and their control by lateral graphene gates and charge detectors. In particular, we emphasize that graphene quantum dots and double quantum dots are very promising systems for spin-based solid state quantum computation, since they are believed to have exceptionally long spin coherence times due to weak spin-orbit coupling and weak hyperfine interaction in graphene.  相似文献   
992.
Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics technology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and investigate the quantum optical properties of single quantum dot (QD) emitter coupled to the SPs of a metallic nanowire. Our main results demonstrate the QD luminescence results of photon emission show three distinctive regimes depending on the distance between QD and metallic nanowire, which elucidates a crossover passing from being metallic dissipative for much smaller emitter-nanowire distances to surface plasmon (SP) emission for larger separations at the vicinity of plasmonic metallic nanowire. Besides, our results also indicate that, for both the resonant case and the detuning case, through measuring QD emitter luminescence spectra and second-order correlation functions, the information about the QD emitter coupling to the SPs of the dissipative metallic nanowire can be extracted. This theoretical study will serve as an introduction to understanding the nanoplasmonic imaging spectroscopy and pave a new way to realize the quantum information devices.  相似文献   
993.
Using mean-field theory, we have studied the effect of quantum transverse anisotropies with RKKY interaction on the multi-layer transition and magnetic properties of the spin-1 Blume--Capel model of a system formed by two magnetic multi-layer materials, of different thicknesses, separated by a non-magnetic spacer of thickness M. It is found that the multilayer magnetic order--disorder transition temperature depends strongly on the value of the transverse anisotropy. The multilayer transition temperature decreases when increasing the transverse anisotropy. Furthermore, there exists a critical quantum transverse anisotropy ΔxL beyond which the separate transitions occur in the two magnetic layers. The critical transverse anisotropy ΔxL decreases (increases) on increasing the non-magnetic spacer of thickness M (on increasing the crystal field), and ΔxL undergoes oscillations as a function of the Fermi level.  相似文献   
994.
This paper discusses the existence of ion-acoustic solitary waves and their interaction in a dense quantum electron-positron-ion plasma by using the quantum hydrodynamic equations.The extended Poincar’e-Lighthill-Kuo perturbation method is used to derive the Korteweg-de Vries equations for quantum ion-acoustic solitary waves in this plasma.The effects of the ratio of positrons to ions unperturbation number density p and the quantum diffraction parameter H e (H p) on the newly formed wave during interaction,and the phase shift of the colliding solitary waves are studied.It is found that the interaction between two solitary waves fits linear superposition principle and these plasma parameters have significantly influence on the newly formed wave and phase shift of the colliding solitary waves.The investigations should be useful for understanding the propagation and interaction of ion-acoustic solitary waves in dense astrophysical plasmas (such as white dwarfs) as well as in intense laser-solid matter interaction experiments.  相似文献   
995.
Current transport mechanism in Schottky diode containing InAs quantum dots (QDs) is investigated using temperature-varying current-voltage characteristics. We found that the tunnelling emission has obvious effects on the I-V characteristics. The I-V-T measurements revealed clear effects of QDs on the overall current flow. Field emission (FE, pure tunnelling effect) was observed at low temperature and low voltages bias region. The zero-bias barrier height decreases and the ideality factor increases with decreasing temperature, and the ideality factor was found to follow the T0-effect. When the reverse bias is varied, the ideality factors of Schottky barriers exhibit oscillations due to the tunnelling of electrons through discrete levels in quantum dots. The traps distributed within InAlAs layer can also act as a transition step for reverse bias defect-assisted tunnelling current which can phenomenologically explain the decrease of the effective barrier height with measurement temperature.  相似文献   
996.
Based on the macroscopic dielectric continuum model and Loudon’s uniaxial crystal model, the polar optical phonon modes of a quasi-0-dimensional (Q0D) wurtzite spherical nanocrystal embedded in zinc-blende dielectric matrix are derived and studied. It is found that there are two types of polar phonon modes, i.e. interface optical (IO) phonon modes and the quasi-confined (QC) phonon modes coexisting in Q0D wurtzite ZnO nanocrystal embedded in zinc-blende MgO matrix. Via solving Laplace equations under spheroidal and spherical coordinates, the unified and analytical phonon states and dispersive equations of IO and QC modes are derived. Numerical calculations on a wurtzite/zinc-blende ZnO/MgO nanocrystal are performed. The frequency ranges of the IO and QC phonon modes of the ZnO/MgO nanocrystals are analyzed and discussed. It is found that the IO modes only exist in one frequency range, while QC modes may appear in three frequency ranges. The dispersive frequencies of IO and QC modes are the discrete functions of orbital quantum numbers l and azimuthal quantum numbers m. Moreover, a pair of given l and m corresponds to one IO mode, but to more than one branches of QC. The analytical phonon states and dispersive equations obtained here are quite useful for further investigating Raman spectra of phonons and other relative properties of wurtzite/zinc-blende Q0D nanocrystal structures.  相似文献   
997.
The lifetime of electrostatically trapped indirect excitons in a field-effect structure based on coupled AlGaN/GaN quantum wells has been theoretically studied. Within the plane of a double quantum well, indirect excitons are trapped between the surfaces of the AlGaN/GaN heterostructures and a semitransparent metallic top gate. The trapping mechanism has been assumed to be a combination of the quantum confined Stark effect and local field enhancement. In order to study the trapped exciton lifetime, the binding energy of indirect excitons in coupled quantum wells is calculated by finite difference method in the presence of an electric field. Thus, the lifetime of trapped excitons is computed as a function of well width, AlGaN barrier width, the position of double quantum well in the device and applied voltage.  相似文献   
998.
In this work, influences of external electric and magnetic fields on the optical rectification coefficient, the linear and the third-order nonlinear optical absorption coefficients as well as refractive index changes of finite semi-parabolic quantum dots are investigated. In this regard, energy eigenvalues and eigenfunctions of the system are calculated numerically, and optical properties are obtained using the compact density matrix approach. The results show that external electric and magnetic fields have a great influence on these optical quantities.  相似文献   
999.
The intersubband absorption of the four-energy-level system in strained AlGaN/GaN double quantum wells is calculated by considering the polarization effect and the strain modification on material parameters (e.g., the conduction band offset, the electron effective mass and the static dielectric constant). It is found that the electron wavefunctions mainly locate at the left well and penetrate into the left barrier. The absorption spectrum exhibits multiple peaks contributed by different transitions. The position and height of absorption peaks are not very sensitive to the structural parameters (i.e., composition and thickness) of the central barrier because of the strong built-in electric field. However, the coupling between two wells can be enhanced by strain modulation.  相似文献   
1000.
Within the framework of the effective-mass approximation, the exciton states and interband optical transitions in InxGa1−xN/GaN strained quantum dot (QD) nanowire heterostructures are investigated using a variational method, in which the important built-in electric field (BEF) effects, dielectric-constant mismatch and three-dimensional confinement of the electron and hole in InxGa1−xN QDs are considered. We find that the strong BEF gives rise to an obvious reduction of the effective band gap of QDs and leads to a remarkable electron-hole spatial separation. The BEF, QD height and radius, and dielectric mismatch effects have a significant influence on exciton binding energy, electron interband optical transitions, and the exciton oscillator strength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号