首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2149篇
  免费   297篇
  国内免费   59篇
化学   187篇
力学   997篇
综合类   37篇
数学   717篇
物理学   567篇
  2023年   26篇
  2022年   26篇
  2021年   35篇
  2020年   64篇
  2019年   55篇
  2018年   54篇
  2017年   77篇
  2016年   96篇
  2015年   71篇
  2014年   100篇
  2013年   164篇
  2012年   138篇
  2011年   166篇
  2010年   132篇
  2009年   143篇
  2008年   135篇
  2007年   122篇
  2006年   115篇
  2005年   102篇
  2004年   101篇
  2003年   107篇
  2002年   75篇
  2001年   63篇
  2000年   57篇
  1999年   43篇
  1998年   34篇
  1997年   46篇
  1996年   21篇
  1995年   15篇
  1994年   12篇
  1993年   14篇
  1992年   23篇
  1991年   11篇
  1990年   6篇
  1989年   9篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   8篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有2505条查询结果,搜索用时 31 毫秒
61.
The moving boundary truncated grid (TG) method is used to study wave packet dynamics of multidimensional quantum systems. As time evolves, appropriate Eulerian grid points required for propagating a wave packet are activated and deactivated with no advance information about the dynamics. This method is applied to the Henon-Heiles potential and wave packet barrier scattering in two, three, and four dimensions. Computational results demonstrate that the TG method not only leads to a great reduction in the number of grid points needed to perform accurate calculations but also is computationally more efficient than the full grid calculations.  相似文献   
62.
We are interested in a robust and accurate finite volume scheme for 2-D parabolic problems derived from the cell functional minimization approach. The scheme has a local stencil, is locally conservative, treats discontinuity rigorously and leads to a symmetric positive definite linear system. Since the scheme has both cell centered unknowns and cell edge unknowns, the computational cost is an issue and a parallel algorithm is then suggested based on nonoverlapping domain decomposition approach. The interface condition is of the Dirichlet–Robin type and has a parameter λ. By choosing this parameter properly, the convergence of the iteration process could be sped up. Numerical results for linear and nonlinear problems demonstrate the good performance of the cell functional minimization scheme and its parallel version on distorted meshes.  相似文献   
63.
脉搏血氧饱和度检测仪可以无损、实时地检测动脉血液中的含氧百分比,从而快速对人体的呼吸状况以及心肺功能作出判断,但其检测精度极易受到测试部位运动的影响.人体测试部位的运动大致可以分为突发性运动干扰以及周期性的运动干扰.突发性干扰表现在局部脉搏波的波形突变上,而周期性的干扰体现在多个局部脉搏波的波形的周期性变化上.文章有针对性地提出了一种将微分阈值分段与迭带中值滤波相结合的方法来剔除突发扰动的方法,并且在上诉方法上再加上一级多点移动平滑以消除周期性运动干扰.实验证明该方法在消除多种运动伪差上有着较好的效果,且该方法计算简单,易于实现,有着一定的实际应用价值.  相似文献   
64.
A numerical method is presented for the analysis of interactions of inviscid and compressible flows with arbitrarily shaped stationary or moving rigid solids. The fluid equations are solved on a fixed rectangular Cartesian grid by using a higher‐order finite difference method based on the fifth‐order WENO scheme. A constrained moving least‐squares sharp interface method is proposed to enforce the Neumann‐type boundary conditions on the fluid‐solid interface by using a penalty term, while the Dirichlet boundary conditions are directly enforced. The solution of the fluid flow and the solid motion equations is advanced in time by staggerly using, respectively, the third‐order Runge‐Kutta and the implicit Newmark integration schemes. The stability and the robustness of the proposed method have been demonstrated by analyzing 5 challenging problems. For these problems, the numerical results have been found to agree well with their analytical and numerical solutions available in the literature. Effects of the support domain size and values assigned to the penalty parameter on the stability and the accuracy of the present method are also discussed.  相似文献   
65.
For the coupled system with moving boundary values of multilayer dynamicsof fluids in porous media,a characteristic finite difference fractional step scheme appli-cable to the parallel arithmetic is put forward.Some techniques,such as the change ofregions,the calculus of variations,the piecewise threefold quadratic interpolation,themultiplicative commutation rule of difference operators,the decomposition of high orderdifference operators,and the prior estimates,are adopted.The optimal order estimatesin the l2norm are derived to determine the error in the approximate solution.This nu-merical method has been successfully used to simulate the flow of migration-accumulationof the multilayer percolation coupled system.Some numerical results are well illustratedin this paper.  相似文献   
66.
Simulation of nano‐scale channel flows using a coupled Navier–Stokes/Molecular Dynamics (MD) method is presented. The flow cases serve as examples of the application of a multi‐physics computational framework put forward in this work. The framework employs a set of (partially) overlapping sub‐domains in which different levels of physical modelling are used to describe the flow. This way, numerical simulations based on the Navier–Stokes equations can be extended to flows in which the continuum and/or Newtonian flow assumptions break down in regions of the domain, by locally increasing the level of detail in the model. Then, the use of multiple levels of physical modelling can reduce the overall computational cost for a given level of fidelity. The present work describes the structure of a parallel computational framework for such simulations, including details of a Navier–Stokes/MD coupling, the convergence behaviour of coupled simulations as well as the parallel implementation. For the cases considered here, micro‐scale MD problems are constructed to provide viscous stresses for the Navier–Stokes equations. The first problem is the planar Poiseuille flow, for which the viscous fluxes on each cell face in the finite‐volume discretization are evaluated using MD. The second example deals with fully developed three‐dimensional channel flow, with molecular level modelling of the shear stresses in a group of cells in the domain corners. An important aspect in using shear stresses evaluated with MD in Navier–Stokes simulations is the scatter in the data due to the sampling of a finite ensemble over a limited interval. In the coupled simulations, this prevents the convergence of the system in terms of the reduction of the norm of the residual vector of the finite‐volume discretization of the macro‐domain. Solutions to this problem are discussed in the present work, along with an analysis of the effect of number of realizations and sample duration. The averaging of the apparent viscosity for each cell face, i.e. the ratio of the shear stress predicted from MD and the imposed velocity gradient, over a number of macro‐scale time steps is shown to be a simple but effective method to reach a good level of convergence of the coupled system. Finally, the parallel efficiency of the developed method is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
67.
The direct injection of CO2 into the deep ocean is one of the feasible ways for the mitigation of the global warming, although there is a concern about its environmental impact near the injection point. To minimize its biological impact, it is necessary to make CO2 disperse as quickly as possible, and it is said that injection with a pipe towed by a moving ship is effective for this purpose. Because the injection ship moves over a spatial scale of O(102km), a mesoscale model is necessary to analyse the dispersion of CO2. At the same time, since it is important to investigate high CO2 concentration near the injection point, a small‐scale model is also required. Therefore, in this study, a numerical model was developed to analyse CO2 dispersion in the deep ocean by using a fixed mesoscale and a moving small‐scale grid systems, the latter of which is nested and moves in the former along the trajectory of the moving ship. To overcome the artificial diffusion of mass concentration at the interface of the two different grid systems and to keep its spatial accuracy almost the same as that in the small‐scale, a particle Laplacian method was adopted and newly modified for anisotropic diffusion in the ocean. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
68.
When solving unsteady computational fluid dynamics problems in aerodynamics with a gridless method, a cloud of points is usually required to be regenerated due to its accommodation to moving boundaries. In order to handle this problem conveniently, a fast dynamic cloud method based on Delaunay graph mapping strategy is proposed in this paper. A dynamic cloud method makes use of algebraic mapping principles and therefore points can be accurately redistributed in the flow field without any iteration. In this way, the structure of the gridless clouds is not necessarily changed so that the clouds regeneration can be avoided successfully. The spatial derivatives of the mathematical modeling of the flow are directly determined by using weighted least‐squares method in each cloud of points, and then numerical fluxes can be obtained. A dual time‐stepping method is further implemented to advance the two‐dimensional Euler equations in arbitrary Lagarangian–Eulerian formulation in time. Finally, unsteady transonic flows over two different oscillating airfoils are simulated with the above method and results obtained are in good agreement with the experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
69.
This paper proposes a method for the creation of hybrid meshes with embedded surfaces for viscous flow simulations as an extension of the multiple marching direction approach (AIAA J. 2007; 45 (1):162–167). The multiple marching direction approach enables to place semi‐structured elements around singular points, where valid semi‐structured elements cannot be placed using conventional hybrid mesh generation methods. This feature is discussed first with a couple of examples. Elements sometimes need to be clustered inside a computational domain to obtain more accurate results. For example, solution features, such as shocks, vortex cores and wake regions, can be extracted during the process of adaptive mesh generation. These features can be represented as surface meshes embedded in a computational domain. Semi‐structured elements can be placed around the embedded surface meshes using the multiple marching direction approach with a pretreatment method. Tetrahedral elements can be placed easily instead. A couple of results are presented to demonstrate the capability of the mesh generation method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
70.
Aircraft holding around busy airports may be requested to sustain as much as 45 min of icing before landing or being diverted to another airport. In this paper, a three‐dimensional mesh deformation scheme, based on a structural frame analogy, is proposed for the numerical simulation of ice accretion during extended exposure to adverse weather conditions. The goal is to provide an approach that is robust and efficient enough to delay or altogether avoid re‐meshing while preserving (enforcing) nearly orthogonal elements at the highly distorted ice surface. Robustness is achieved by suitably modifying the axial and torsional stiffness components of the frame elements in order to handle large and irregular grid displacements typical of in‐flight icing. Computational efficiency is obtained by applying the mesh displacement to an automatically selected small subset of the entire computational domain. The methodology is validated first in the case of deformations typical of fluid‐structure interaction problems, including wing bending, a helicopter rotor in forward flight, and the twisting of a high‐lift wing configuration. The approach is then assessed for aero‐icing on two swept wings and compared against experimental measurements where available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号